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Abstract
To be used effectively, market knowledge and information
must be structured and represented in ways that are par-
simonious and conducive to efficient managerial decision
making. This manuscript proposes a new latent structure
spatial model for the representation of market information
that meets this requirement. When applied to a priori de-
fined (e.g., socioeconomic) segments, our proposed meth-
odology provides a new way to display marketing data par-
simoniously via dimension reduction through a
factor-analytic specification. In post hoc studies, we simul-
taneously derive market segments from the data and rep-
resent the structure of market information within each of
the unobserved, derived groups/segments. We summarize
all relevant information concerning derived market seg-
ments via a series of maps that prove conducive to the quick
and accurate dissemination of customer and competitor
market information. The associations between the variables
are captured in a reduced space, where each variable is rep-
resented by a vector that emanates from the origin and ter-
minates on a hypersphere of unit (the vector length is ar-
bitrary) radius (e.g., a unit circle in a two-dimensional
space). The angles between the variable vectors capture the
correlation structure in the reduced space. The method is
very general and can be utilized to identify latent structures
in a wide range of marketing applications. We present an
actual commercial marketing application involving the (nor-
malized) prescription shares (of specialists) of ethical drugs
to demonstrate the effectiveness of representing market in-
formation in this manner and to reveal the advantage of the
proposed methodology over a more general finite mixture-
based method. The proposed methodology derives three
segments that tend to group specialists with respect to the
stage of adoption of innovation in this therapeutic category.
The specialists in the first group appear to be laggards be-
cause they prescribe more of the older class of brands. How-
ever, they also have a higher-than-average preference for a
newer and somewhat cheaper brand. This suggests that

some of the specialists belonging to this segment may be
price sensitive, while others may exhibit a slower adoption
cycle, replacing the older class with the newer brands, and
thus, skip one stage in the cycle of innovation. The special-
ists in the second segment are heavy users of the newer class
of brands but are not particularly fast to adopt the latest
brands. Finally, the last segment clearly consists of innova-
tors. Traditionally, pharmaceutical marketers have viewed
specialists in one of two extremes—all specialists are the
same (i.e., the market has only one segment) or all specialists
are very different (i.e., the market consists of 10,000� seg-
ments of one physician each). Not surprisingly, this analysis
suggests a more moderate perspective: specialists adopt
new products at different rates.
(Spatial Models; Market Segmentation; Latent Structure Analysis;
Maximum Likelihood Estimation; Ethical Drugs)

1. Introduction
Market information has profound strategic impor-
tance for organizations, and its positive effects on
business performance have been well documented
(e.g., Day 1994, Li and Calantone 1998). To be ef-
fective, however, information needs to be trans-
ferred efficiently throughout the organization be-
yond those who acquire it (Day 1994). This can be
achieved only if the information is parsimoniously
summarized in a format that facilitates rapid inter-
pretation and communication. Graphical represen-
tations help to quickly identify patterns in multi-
variate data and serve to communicate the very
essence of marketing research results, capitalizing
on human abilities to recognize, process, and re-
member visual patterns (Spence and Lewandowski
1990). Although insightful, graphical display is fre-
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quently obtained in a model-free context and there-
fore does not do justice to the complexity of mar-
keting data. We propose to fill that gap by provid-
ing a new model-based technique for the
parsimonious representation and graphical display
of large, high-dimensional, heterogeneous data sets.
This type of data is encountered in a wide range of
marketing problems, such as in customer satisfac-
tion, market segmentation, studies of customer val-
ue, positioning, and brand evaluation studies.
When applied to a priori derived (e.g., socioeconom-
ic) groups, our proposed method provides a new
way to display marketing data parsimoniously via
a spatial map. In post hoc studies, we simulta-
neously derive such diverse groups from the data
(market segments) and represent the structure of
market information within each of the unobserved
groups/segments. We summarize all relevant infor-
mation at the derived group/segment level via a
series of maps that are conducive to the quick and
accurate dissemination of customer and competitor
market information across the firm.

Our approach falls into the class of latent structure
(MDS or factor) mixture models, which we review in
the next section. This proposed methodology can be
accurately viewed as a covariance-restricted spatial
version (nested) of the general Wolfe (1970) pattern
clustering procedure involving finite mixtures of
multivariate normal distributions. Unlike several la-
tent structure MDS models (e.g., MULTICLUS; De-
Sarbo et al. 1990), which are spatial mean-restricted
special cases of this same Wolfe general framework,
the proposed methodology restricts/reparameterizes
the derived covariance matrices, not the estimated
centroids. We then describe our approach technically
and apply it to an actual commercial data set, inves-
tigating physicians’ prescribing behavior in a cate-
gory of ethical pharmaceuticals. We first present the
empirical results from the most general Wolfe pattern
clustering model with unrestricted mean vectors and
covariance matrices. Finally, the results of our covari-
ance-restricted methodology are presented and for-
mally compared to this more general, highly param-
eterized model. The last section summarizes the
conclusions.

2. Latent Structure Spatial Mixture
Models

Several existing spatial models provide graphical rep-
resentations and abound in such areas as competitive
market structure analysis (Elrod and Keane 1995) and
market segmentation (DeSarbo et al. 1994). However,
heterogeneity is a major factor hampering the graph-
ical display of multivariate data that is often encoun-
tered in marketing research studies. As has been apt-
ly demonstrated in the segmentation and mixture
modeling literature, aggregate sample results fre-
quently mask the true structure underlying market-
ing data. After the data are classified according to a
priori defined groups or segments, many of the above
methods can be applied separately to each group.
However, splitting the sample a priori according to
demographic and lifestyle variables often yields lim-
ited discrimination with respect to the variables of
key interest depending on the particular variables
used (cf., Wedel and Kamakura 1999, Chapter 2). La-
tent structure mixture models, specifically mixture
MDS models (cf., Bockenholt and Bockenholt 1991,
DeSarbo et al. 1994, Wedel and DeSarbo 1996) and
mixture factor models (cf., Hinton et al. 1997, Tipping
and Bishop 1999), were developed for such situations,
where a priori market segmentation based on ob-
served variables fails.

In mixture MDS (mMDS) models (DeSarbo et al.
1994), the relationships between brand locations and
derived segment vectors or ideal points render infor-
mation about the conditional centroids of the com-
ponent mixture distributions. As will be shown, this
is quite different from our proposed procedure,
which derives separate spaces for each of the derived
latent groups/segments and thus allows the brand
locations to vary across the groups/segments. This
may better serve the needs of graphically represent-
ing the structure of high-dimensional data, especially
when the user wants to represent the different pattern
of interdependencies among variables between the
unobserved groups/segments. A second class of mix-
ture-latent variable models comprises (normal) mix-
tures involving structural equation models. These
models are constrained versions of Wolfe’s (1970)
mixture of multivariate normal distributions. Wolfe
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(1970) assumed that the data follow a multivariate
normal distribution within each of a number of un-
observed groups/segments and attempts to recover
the latent segments, as well as the mean vector and
covariance matrix for each segment. As in structural
equation modeling (Jöreskog 1973), latent class struc-
tural equations modeling imposes constraints on the
covariance matrix in the unobserved segments, which
are dictated by prior theory (e.g., Jedidi et al. 1997,
Dolan and van der Maas 1998). Specifically, mixtures
of confirmatory factor (mCFA) models are contingent
upon available prior theory that dictates the structure
of the factor loadings. Although identifying restric-
tions are necessary for our approach, it does not re-
quire a theoretical motivation of the pattern of load-
ings. In addition, our parameterization of the
group-specific covariance matrix is different from that
in mCFA models in that we enable a spatial repre-
sentation of the segment level covariance matrix.
Also, per the mCFA literature, the factor structure is
not graphically represented, which is a main feature
of our approach. Thus, our proposed graphical dis-
play of mixtures of multivariate normals has features
that have not been proposed heretofore in the litera-
ture and may provide a more parsimonious fit over
competing latent structure approaches containing
more parameters.

3. The Proposed Spatial
Methodology

We intend to portray the structure in market segment
level data covariance structures via a series of maps.
Heterogeneity and multivariate dependencies in the
data are captured by specific parameters of a factor
model underlying these maps. The covariance struc-
ture of the variables is represented by the angles
among variable vectors that terminate on the bound-
aries of a unit hypersphere. Such a representation is
comparable to biplot graphical representations in ex-
ploratory factor analysis. We assume the existence of
segments that are ordered on the basis of their (un-
known) sizes or prior/mixing probabilities: w(1), . . . ,
w(S). Then, the covariance structure of the variables

within a segment is represented by conveniently de-
picting them as vectors that terminate at the bound-
ary of a unit hypersphere, analogous to factor analytic
specifications. The directions of the variables in the
reduced space portray the covariance structure; color
intensities can be utilized to identify quickly the var-
iables in the plots. Our proposed methodology can
be viewed as a mixture of exploratory factor models
that simultaneously derive latent segments, as well as
depicting the covariance structure within each seg-
ment vis-à-vis a reduced space, factor model.

To formulate the model underlying this spatial rep-
resentation, we let:

i � 1, . . . , I observations (e.g., consumers);

j � 1, . . . , J variables (e.g., brands);

s � 1, . . . , S market segments (unknown);

X � (x ) a vector of variables for the ith observation.i ij

We assume that the Xi are generated from a finite but
unknown number of segments, ordered in size from
1 to S. Each segment is characterized by its covariance
structure and associated mixing proportion wS. With-
in each segment, the variables are multivariate-nor-
mal distributed:

X � N(� , � ). (1)i �s s s

Equation (1) represents Wolfe’s (1970) classical mix-
ture of multivariate normals—the most general mod-
el in this particular context (i.e., no explicit con-
straints are placed on estimated mean vectors or
covariance matrices). We now impose a factor struc-
ture for the covariance matrix of each segment (cf.,
Elrod and Keane 1995), with M ortho-normal (i.e.,
unit-variance and orthogonal) common factors and
J-specific factors:

�S � LSL � �S.�S (2)

LS is a segment-specific J � M matrix of loadings of
the J variables on the M common factors. The matrix
	S � diag(	js) is the J � J diagonal matrix capturing
the contribution of the J specific factors to �S. Without
any loss of generality, the matrix of factor loadings
can be uniquely expressed as:
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LS � DSCS, (3)

which, in effect, is a transformation in scale, where
DS � diag(djs) is a J � J segment-specific diagonal
matrix of standard deviations and CS is a J � M
segment-specific matrix of factor loadings for the
unit-variance common factors of segment s, FS. That
is, 
S � CSC is the correlation matrix induced by�S
the common factors with the J � M matrix of scores
FS in segment s. This can be seen by writing the
model in Equations (1) and (2) equivalently as Xi � s

� �S � LSFS � eS, with FS � N (0, IM ) and eS �
N (0, �S ). We now transform the ortho-normal fac-
tors of segment s, FS as:

XCS � CSFS, (4)

which yields a J-dimensional vector XCS of unit-vari-
ance (i.e., standardized). This transforms the model
in Equations (1) and (2) into: Xi � s � �S � DSXCS �
eS, with XCS � N(0, 
S). It can be shown that CS is,
in fact, the matrix of cosines of the angles between
XCS and the axes (i.e., common factors FS) in the re-
duced M-dimensional space, since CS � D LS and CS

�1
S

has unit length:

CS � cos(∠ {XCS, FS}). (5)

We now combine Equations (1)–(5) into a single equa-
tion:

cs s cs sX � N[� , D cos(∠ {X , F })cos(∠ {X , F })�D � � ].i �s s s s s

(6)

Equation (6) completely describes a model in which
each segment is characterized by the means �S, the
common-factor variance DS, the angles between var-
iables and the directions of the reduced space
∠ {XCS, FS}, and its specific-factors variance �S. In
specific applications, the parsimony of this represen-
tation is substantially increased if the equality of
means and/or the equality of specific factor varianc-
es across segments (i.e., �S � �, and/or �S � �) is
justified by appropriate statistical hypothesis tests.
The estimated parameters of the model—in partic-
ular the wS, �S, and CS—form the basis for the
graphical representation.

3.1. Estimation
It is well known that factor analytic models are not
identified because the solutions remain invariant to
rotation and reflection (Elrod and Keane 1995). In
addition, the model described by Equation (6) is af-
fected by indeterminacies induced by the constraint
that each row vector in the matrix CS be of unit
length. This makes one column in the matrix
∠ {XCS, FS} of angles between variables and the di-
rections of the reduced space a combination of the
remaining columns. This indeterminacy is removed
by estimating only the elements in the first M � 1
columns of ∠ {XCS, FS} and using them to compute
the elements of the last column (based on the con-
straint � cos(∠ X F )2 � 1, for any j � 1, . . . , J ).M CS S

m�1 jm m

We remove within-segment invariance to rotations
by imposing that the first k of the M factors form
an orthogonal base for (i.e., be ortho-normal trans-
formations of) the first k variables, for all integer k
between 1 and M. Under these conditions, the first
factor must be collinear with the first variable, while
the other factor(s) must be orthogonal to it. Because
the second variable is contained in the plane deter-
mined by the first two factors, the other M � 2 fac-
tors must be orthogonal on this variable. In general,
because the kth variable is contained in the hyper-
plane determined by the first k factors, the other
M � k factors are constrained to be orthogonal on
the kth variable. Because of these constraints and the
requirement that rows in CS be of unit length, in
models with two factors M � 2, only (J � 1)(M � 1)
elements in ∠ {XCS, FS} are estimated. In models with
three or more factors M � 3, only (J � 1)(M � 1) �
(M � 1)(M � 2)/2 elements in ∠ {XCS, FS} are esti-
mated. Finally, we remove the invariance to reflec-
tions by arbitrarily constraining the correlations be-
tween the kth variable and the kth factor to be
nonnegative, for k � 2, . . . , M. The constraints im-
posed on our model for identification are analogous
to the constraints imposed on a confirmatory factor
model for identification. However, there does not ex-
ist a one-to-one relationship between these sets of
constraints.

The model is estimated using maximum likelihood.
The conditional likelihood that observation i belongs
to segment s is:
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1
J �1/2 �1L � [(2�) �� �] exp � (X � � )�� (X � � ) ,i �s s i s s i s[ ]2

(7)

where

cs s cs s� � D cos(∠ {X , F })cos(∠ {X , F })�D � � . (8)s s s s

The complete log-likelihood function for all observa-
tions and all segments becomes

I S

ln L � ln w L , (9)� � s i �s� �i�1 s�1

where wS are segment weights or mixing proportions.
The log-likelihood described by Equations (7)–(9) is
maximized numerically under the constraints that the
estimated standard deviations are positive, and seg-
ment weights are positive and sum to one.

3.2. Model Selection and Evaluation
The standard likelihood ratio test for testing the
M-factor model against the M � 1-factor model is in-
valid in this case. Thus, we use CAIC � �2 ln L �
(ln I � 1)P (Bozdogan 1987) to select both M and S.
For each M, we estimate our model for increasing val-
ues of S, and deem that value of S appropriate that
yields the minimum value of CAIC (Bozdogan 1987).
For selection of S, similar problems of the LR test as
for the selection of M occur (Aitkin et al. 1981). Be-
cause the log-likelihood function of mixtures of mul-
tivariate normal distributions is not globally concave,
the estimation procedure may yield only a local max-
imum. Thus, for each S and M, we estimate the model
10 times from random starting points and retain the
solution with largest log-likelihood. We select the so-
lution that yields the minimum CAIC. In addition, we
can also estimate reduced models with the same
number of factors and segments as the retained so-
lution, with equal variances of specific factor varianc-
es across segments (i.e., �s � �), and use the CAIC
criterion to test if they perform better than the re-
tained solution. We would like to note that whereas
the estimation of our model is feasible for many di-
mensions, clearly interpretation is more difficult than
for a lower dimensional representation. In practical
applications we can, however (at the cost of fit), al-

ways use a two-dimensional representation of the
data comparable to what is generally accepted for bi-
plots and correspondence analysis, for example.

4. Application: Ethical
Pharmaceuticals

4.1. Background: The Pharmaceutical Industry
The pharmaceutical industry is driven by the need to
innovate new molecular compounds. The process of
developing a new product and getting it to market
takes as long as 8 years and costs in excess of $500
million. At the same time, only 1 in 10 chemical com-
pounds that are chosen for clinical testing is launched
into the market. Because of the underlying discovery
of a new chemical chain that offers therapeutic pos-
sibility, multiple pharmaceutical companies pursue
the development of similar or related chemical com-
pounds at the same time. Typically, several classes of
ethical drugs, with several related brands within each
class, are available for each disease state. Within a
particular class of therapies, several (as many as 5 to
10, depending on the disease state) brands may be
available that work fairly similarly, yet seem to work
better in particular types of patients (for example,
overweight patients, older patients, women, men, or
patients with certain specific symptoms). Based on
their training, experience, types of patients, and phar-
maceutical marketing activities, most doctors will
write prescriptions for all or most brands in a thera-
peutic class. At the same time, most doctors will de-
velop certain preferences over time. So, while they
write prescriptions for many products, one brand
may capture a higher share of the doctor’s therapeutic
choices than other brands. As a result, medical doc-
tors are likely to exhibit different prescribing pat-
terns, not only because they treat different types of
patients but also because they may come to different
beliefs regarding the relative performance of the
drugs for any given patient type. Thus, an analysis
of physician’s prescription patterns can provide valu-
able and timely information about the perceived ef-
ficacy of drugs and the emerging structure of com-
petition within a given therapeutic class.
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Table 1 Actual Drug Market Shares

Brand Market Share Description

Brand A
Brand B
Brand C
Brand D
Brand E
Brand F
Brand G

About 20%
15–17%
15–17%
15–17%

5–7%
5–7%
5–7%

Oldest class of drugs
Early entrants in new class
Early entrants in new class
Early entrants in new class
Newest brands in new class
Newest brands in new class
Newest brands in new class

Table 2 Model Selection Heuristics for Wolfe’s Mixture Model

Seg-
ments Log-likelihood Parameters AIC CAIC

1
2
3*
4
5

2517.23
2368.86
2249.47
2207.82
2172.75

35
71

107
143
179

5104.46
4879.72
4712.94
4701.50
4703.50

5263.81
5202.98
5200.11
5352.71
5518.48

3a
3b
3c

2530.50
2490.21
2517.23

23
44
86

5107.00
5068.42
5206.46

5211.72
5268.75
5598.02

*Denotes minimum CAIC solution.4.2. A Commercial Pharmaceutical Market
Research Study

A major U.S. pharmaceutical manufacturer commis-
sioned a market research study among specialists (n
� 258) (such as endocrinologists, obstetricians, psy-
chiatrists, diabetologists, etc.) to understand their
prescribing rates for various brands of ethical phar-
maceuticals in a particular therapeutic class and how
these rates relate to physician demographic and psy-
chographic measures. In general, specialists tend to
be more knowledgeable than general or family prac-
tice doctors about drugs, their pharmacology, and ra-
tionale for how and why the drugs work the way they
do. In any given disease state, specialists tend to rep-
resent less than 20% (perhaps as little as 5%) of all
doctors that prescribe a therapeutic class, but may
represent as much as 50% of the prescriptions in the
class.

In this study, we focus on the top seven brands that
account for more than 85% of the drugs prescribed
by the specialists in the sample. The brands are la-
beled with letters from A to G, to reflect the order of
their introduction in the market (e.g., Brand C has
been introduced prior to Brand D). Brand A belongs
to an older class of drugs, while brand G belongs to
the newest class of drugs in this particular product
class. Table 1 reports the market shares of these
brands in the sample.

We first calculate prescription shares across all the
brands mentioned in the survey and focus on these
seven brands. The prescription shares are column-
standardized prior to analysis. As a basis of compar-
ison, we contrast the results of the proposed meth-
odology with results from the more general Wolfe’s
(1970) mixture of multivariate normal distributions.

Because brand shares are standardized prior to the
analysis, segment-specific means capture departures
from the average prescription shares in the sample.
For example, if the mean for Brand A’s standardized
market shares in segment s is positive, then Brand A’s
average market share in segment s is greater than its
average market share in the entire sample.

4.3. The General Model: Wolfe’s (1970) Pattern
Clustering

We first apply Wolfe’s (1970) pattern clustering finite
mixture approach for S � 1, . . . , 5 segments across
this sample of specialists. Table 2 presents the various
goodness-of-fit heuristics for this analysis. Based on
CAIC, we select the solution with S � 3 segments.
Table 3 reports the estimated means and covariance
matrices for this solution, while Figure 1 displays the
estimated segment means.

Specialists in the first and the largest segment (w1

� 0.45) exhibit above average preferences for Brand
A, the older (and cheaper) class of therapy, and sub-
stantially lower than average preferences for the new-
er class of therapies, particularly for the first ones in-
troduced on the market (i.e., Brand B and Brand E).
Note that there is a high positive covariance in pre-
scription between Brand G and Brand C, indicating
that specialists in this segment preferring C also tend
to prescribe G. Specialists in the second segment (w2

� 0.40) favor the first brands in the newer class of
therapy, particularly Brand B, and have the lowest
usage of Brand F and Brand G, the newest brands on
the market. Brand E and Brand B prescriptions covary



DESARBO, DEGERATU, WEDEL, AND SAXTON
Spatial Representation of Market Information

MARKETING SCIENCE/Vol. 20, No. 4, Fall 2001432

Table 3 Estimates for the S � 3 Wolfe Solution

Segment
(weight) Brand A Brand B Brand C Brand D Brand E Brand F Brand G

Means
1 (0.45)
2 (0.40)
3 (0.15)

0.11
0.07

�0.52

�0.45
0.45
0.11

�0.29
0.29
0.11

�0.26
0.18
0.30

�0.43
0.28
0.53

�0.02
�0.45

1.25

0.07
�0.39

0.85

Covariance Matrices
1 0.66

·
·
·
·
·
·

0.05
0.31

·
·
·
·
·

0.09
0.15
0.52

·
·
·
·

�0.08
0.04

�0.03
0.39

·
·
·

0.10
0.05
0.10
0.01
0.33

·
·

�0.01
0.00
0.04
0.01
0.10
0.51

·

0.03
0.12
0.30
0.00
0.24
0.17
0.88

2 1.41
·
·
·
·
·
·

�0.35
1.30

·
·
·
·
·

�0.57
�0.18

1.43
·
·
·
·

�0.32
�0.18
�0.14

1.35
·
·
·

�0.38
�0.34

0.06
�0.22

1.37
·
·

�0.05
�0.07

0.10
�0.07

0.00
0.10

·

�0.02
�0.11
�0.04
�0.06
�0.04

0.12
0.33

3 0.60
·
·
·
·
·
·

�0.23
1.09

·
·
·
·
·

0.14
�0.25

0.79
·
·
·
·

�0.12
�0.17

0.14
1.47

·
·
·

�0.05
�0.11
�0.20
�0.44

0.96
·
·

0.11
�0.09
�0.23

0.17
�0.34

2.77
·

�0.37
�0.64
�0.19

0.17
0.07

�1.15
2.01

negatively, while Brand A prescriptions covary neg-
atively with prescriptions for some of the newer
brands. Finally, the third and smallest segment (w3 �
0.15) has a higher than average preference for Brand
F and Brand G, the most recently introduced brands,
uses less of the earlier brands in the newer therapeu-
tic class, and has the lowest usage of the older class
of drugs. In fact, the usage level in this segment, rel-
ative to sample averages, correlates very highly with
the novelty of the drugs. It is also important to note
the strong negative correlation between Brand F and
Brand G.

Thus, the three segments tend to group specialists
with respect to the stage of adoption of innovation in
this therapeutic category. The specialists in the first
group appear to be laggards because they prescribe
more of the older class. However, they also have a

higher than average preference for Brand G, a newer
and somewhat cheaper brand. This suggests that
some of the specialists belonging to this segment may
be price sensitive, while others may exhibit a slower
adoption cycle, replacing the older class with the
newer brands and, thus, skip one stage in the cycle
of innovation. The specialists in the second segment
are heavy users of the newer class but are not partic-
ularly fast to adopt the latest brands. Finally, the last
segment clearly consists of innovators. Traditionally,
pharmaceutical marketers have viewed specialists in
one of two extremes: all specialists are the same (i.e.,
the market has only one segment) or all specialists
are very different (i.e., the market consists of 10,000�

segments of one physician each). Not surprisingly,
this analysis suggests a more moderate perspective:
specialists adopt new products at different rates.
Knowing brand preferences, and being able to visu-
ally depict them as in Figure 1, is insightful and tells
a complete story about how to affect those preferenc-
es and which products are likely to be used as sub-
stitutes. This secondary information is available in the
covariance matrices in Table 3. Unfortunately, mar-
keting managers often have difficulty interpreting
these numeric matrices to meaningfully impact their
decision making. So, while Wolfe’s (1970) model does
provide some insight into the market structure, it
does not allow managers the full utility of the mar-
keting research data/analyses they have procured.
Clearly, as the number of brands here increases, such
interpretations of the covariance matrix become in-
creasingly problematic!

We also examine three externally constrained Wolfe
(1970) three-segment solutions as displayed near the
bottom of Table 2. Solution 3a reflects the various
model selection heuristics for the solution where only
means were estimated and not covariances (here, all
segment covariance matrices were set to the identity
matrix). Solution 3b displays the same type of results
for the situation where only segment level means and
variances were estimated (e.g., the segment level co-
variance matrices estimated were constrained to be
diagonal). Finally, Solution 3c denotes similar types
of statistics for the case where all the segment means
were fixed at zero and the segment covariance matri-
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Figure 1 Graphic Representation of S � 3 Wolfe Solution

ces were free to vary. As shown by the corresponding
CAIC statistics, the three-segment unconstrained so-
lution presented in detail above dominates all three
of these constrained solutions. Thus, it appears that
means and covariances are both necessary for three
segments to adequately describe the structure in this
particular application.

4.4. The Proposed Spatial Analysis
The proposed spatial latent structure methodology is
nested in Wolfe’s (1970) normal mixture model, with
segment covariance matrices reparameterized as
functions of angles in a reduced space. In an attempt
to derive the most parsimonious model, we exploit
the flexibility of the proposed method and arrive at
the best solution in multiple stages. In the first stage,
we run the procedure for an increasing number of
dimensions for the reduced space. Based on CAIC,
the solutions with one and two dimensions are su-
perior to Wolfe’s (1970) solution and, thus, are re-
tained for further analysis (among these, the two-di-
mensional solution is best). In the second stage, we

explore if additional constraints across segments can
further increase the parsimony of any of these two
solutions. The constraint �S � � is found to lower
CAIC for the two-dimensional solution. Thus, the
proposed procedure identified three solutions that
are substantially more parsimonious than, and statis-
tically superior to Wolfe’s (1970) solution (in terms of
CAIC). In the final stage, we impose additional re-
strictions on each of these solutions to ensure that, in
each case, the elements of the resulting spatial rep-
resentation are statistically significant. Specifically, all
the standard deviations along common factors that
are not statistically different from zero in the previous
stage and their corresponding angles are constrained
to zero. Table 4 reports the goodness-of-fit measures
for all the relevant models during this model selection
process. Table 5 reports the coefficient estimates, and
Figures 2, 3, and 4 provide a graphical representation
of the estimated means and angles of the retained
‘‘best’’ solution.

This best solution has two dimensions for the re-
duced space, equal variances of specific factors across
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Table 4 Model Selection Heuristics for Proposed Model with 3 Segments

Dimensions

Constraints
across

Segments

Constraints
on Nonsignif.

Std. Devs.
within Segments Parameters Log-Likelihood AIC CAIC

1
2
3

No
No
No

No
No
No

65
83

101

2334.21
2296.50
2272.15

4798.42
4759.00
4746.30

5094.36
5136.90
5206.15

2b �S � � No 69 2332.64 4803.28 5117.43

1
2
2b*

No
No
�S � �

Yes
Yes
Yes

45
68
43

2345.12
2299.29
2350.97

4780.24
4734.59
4787.95

4985.13
5044.18
4983.72

*Denotes minimum CAIC solution.

segments �S � � and many variances along common
factors set to zero. It is characterized by only 43 pa-
rameters, as opposed to 107 parameters in the solu-
tion based on Wolfe’s (1970) procedure. Similar to
Wolfe’s (1970) first segment, the specialists in the first
segment (w1 � 0.50) exhibit significantly higher than
average prescription shares for Brand A, the older
class of therapy, and below average preferences for
all other drugs. The common factor structure cap-
tures a pattern of significant covariance for three of
the seven drugs: Brand C, Brand G, and Brand A,
explaining 44.4%, 51.6%, and 34.8%, respectively, of
each drug’s within-segment variance in standardized
market shares. Within this reduced space, the spatial
representation of the covariance structure reveals that
Brand C and Brand G are prescribed in a very similar
manner (the differences between their angles are not
statistically significant) and almost orthogonal to
Brand A (the angles are greater than, but not statis-
tically different from, 90
). When the reduced-space
structure is not statistically significant (i.e., all stan-
dard deviations along common factors are not statis-
tically different from zero), the covariance structure
in the full seven-dimensional space is orthogonal.
Thus in this segment, the only departure from a fully
orthogonal structure is that Brand C and Brand G are
positively correlated. Based on point estimates, this
correlation equals 0.47, and the angle between Brand
C and Brand G in the seven-dimensional space equals
62
. Thus, specialists in this segment prescribing
Brand C have a relatively strong tendency to also pre-

scribe Brand G, which was introduced to the market
at a later time.

The specialists in the second segment (w2 � 0.27)
have substantially and significantly higher than av-
erage prescription shares for the newer brands in the
new class of therapy, Brand F and Brand G, and a
significantly lower-than-average preference for Brand
B. Interestingly, the common factor structure captures
a pattern of covariance only for Brand F and Brand
G, which explains 88.7% and 84.2%, respectively, of
each drug’s market share variance. Because Brand F
and Brand G are negatively correlated in the reduced
space (corr � �0.57), they are also negatively corre-
lated in the full space (corr � �0.42), where they
make an angle of 115 degrees. Thus, relative to seg-
ment averages, those specialists prescribing Brand F
more tend to prescribe Brand G less, and vice versa.
The marketing implications in Segment 2 are even
more interesting than for Segment 1. Although both
Brands F and G are clearly more preferred by Seg-
ment 2, increasing share for either drug will come at
the expense of the other brand. Clearly, these two
brands compete strongly against each other in this
segment. The marketing manager who assumes this
segment as merely innovative runs the risk of focus-
ing on the wrong competitors if she or he positions
only against the older products. The advantage of our
new methodology is that the marketing manager can
quickly see the trade-offs occurring between Brands
F and G without having to interpret the full covari-
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Table 5 Estimates for the S � 3, M � 2 Solution for the Proposed Model

Segment
Weight

1
0.50 (0.05)

2
0.27 (0.04)

3
0.23 (0.03)

Segment Brand A Brand B Brand C Brand D Brand E Brand F Brand G

Means
1
2
3

0.38 (0.14)
�0.24 (0.14)
�0.53 (0.17)

�0.30 (0.08)
�0.28 (0.08)

0.96 (0.25)

�0.19 (0.12)
�0.14 (0.10)

0.57 (0.26)

�0.07 (0.12)
0.06 (0.16)
0.08 (0.18)

�0.40 (0.10)
0.19 (0.11)
0.63 (0.23)

�0.35 (0.06)
0.90 (0.31)

�0.30 (0.09)

�0.28 (0.09)
0.98 (0.20)

�0.55 (0.08)

Standard Deviations along Common Factors
1
2
3

0.60 (0.16)
0 (—)
0 (—)

0 (—)
0 (—)
1.09 (0.20)

0.58 (0.12)
0 (—)
1.16 (0.14)

0 (—)
0 (—)
0 (—)

0 (—)
0 (—)
0.99 (0.25)

0 (—)
1.32 (0.16)
0 (—)

0.47 (0.11)
1.06 (0.12)
0 (—)

Angles (in Degrees)
1
2
3

0 (—)
—
—

—
—
0 (—)

112.0 (21.0)
—

—125.2 (11.1)

—
—
—

—
—
141.9 (13.8)

—
0 (—)
—

105.1 (14.3)
—124.6 (11.7)

—

Standard Deviations of Common Factors (Equal across Segments)
0.82 (0.06) 0.66 (0.05) 0.65 (0.06) 1.00 (0.05) 0.77 (0.05) 0.47 (0.04) 0.46 (0.06)

Resulting Covariance Matrices
1 1.03

·
·
·
·
·
·

0.00
0.44
·
·
·
·
·

�0.13
0.00
0.76
·
·
·
·

0.00
0.00
0.00
1.00
·
·
·

0.00
0.00
0.00
0.00
0.59
·
·

0.00
0.00
0.00
0.00
0.00
0.22
·

�0.07
0.00
0.27
0.00
0.00
0.00
0.44

2 0.67
·
·
·
·
·
·

0.00
0.44
·
·
·
·
·

0.00
0.00
0.42
·
·
·
·

0.00
0.00
0.00
1.00
·
·
·

0.00
0.00
0.00
0.00
0.59
·
·

0.00
0.00
0.00
0.00
0.00
1.96
·

0.00
0.00
0.00
0.00
0.00

�0.79
1.34

3 0.67
·
·
·
·
·
·

0.00
1.64
·
·
·
·
·

0.00
�0.73

1.77
·
·
·
·

0.00
0.00
0.00
1.00
·
·
·

0.00
�0.85
�0.06

0.00
1.57
·
·

0.00
0.00
0.00
0.00
0.00
0.22
·

0.00
0.00
0.00
0.00
0.00
0.00
0.21

* Numbers in parentheses represent the computed standard errors.

ances matrices in the previous two methods individ-
ually.

Finally, the specialists in the last segment (w3 �
0.23) have substantially and significantly higher-than-

average preferences for the earlier brands in the new-
er class of therapy: Brand B, Brand C, and Brand E.
They also exhibit lower-than-average preferences for
the newest brands in this class, Brand F and Brand
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Figure 2 Mean Shares and Derived Common Factor Structures for Segment 1

Note: Reported in parentheses is the percent of total variance in brand share explained by the common factors structure.
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Figure 3 Mean Shares and Derived Common Factors Structures for Segment 2

Note: Reported in parentheses is the percent of total variance in brand share explained by the common factors structure.
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Figure 4 Mean Shares and Derived Common Factor Structures for Segment 3

Note: Reported in parentheses is the percent of total variance in brand share explained by the common factors structure.
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G, and for Brand A. The two-factor structure captures
a pattern of covariance for Brand B, Brand C, and
Brand E and explains 73.1%, 76.2%, and 62.5%, re-
spectively, of each drug’s market share variance with-
in this segment. The structure is symmetrical, yield-
ing negative correlations between Brand B and Brand
C (corr � �0.57) and between Brand B and Brand E
(corr � �0.79), while Brand C and Brand E remain
orthogonal (corr � 0.00). This structure indicates that
Brand C and Brand E are each substitutes for, and
thus compete directly with, Brand B, but they do not
compete directly with each other. Reflecting back to
Table 1, Brands B, C, and D are the market leaders.
The brand manager for Brand B is likely to assume
that the key competitors are either the other market
leaders, Brands C and D, or the latest entrants, Brands
F and G. What the graphs in Figure 4 suggest is that
for those physicians who clearly prefer Brand B, not
only is one of the other market leaders a key com-
petitor but another product that might not even have
been considered is a key competitor: Brand E. More-
over, the newest products are not critical competitors
for Brand B.

This retained solution shows some congruence
with the Wolfe (1970) solution. Segments 1, 2, and 3
of the retained solution are comparable to Segments
1, 3, and 2 in Wolfe’s (1970) solution in terms of order
of within-segment normalized prescription shares for
brands. The implied covariances among the drug pre-
scriptions found with the proposed procedure also
tend to appear in Wolfe’s (1970) solution. It is inter-
esting to note that all solutions capture the same neg-
ative correlation between Brand F and Brand G in the
segment where they exhibit higher-than-average pre-
scription shares. Yet, the solution from our proposed
spatial model presented above dominates that of
Wolfe (1970), according to the CAIC heuristic, plus
makes the results so much easier to communicate in
parsimoniously revealing the underlying structure in
the data! Rather than having to process cumbersome
numerical parameter estimates obtained from full es-
timated covariance matrices, managers can quickly
inspect the spatial representations as shown in Fig-
ures 2–4 to assess the structure of mean prescription
shares, as well as the covariance of these brand shares
by derived market segments.

A posterior analysis is performed utilizing corre-
lation and regression on logit transformed posterior
probabilities of membership for each derived market
segment to relate the posterior probabilities of the re-
tained solution to various descriptor variables col-
lected during the study. From this analyses, Segment
1 specialists tend to be general specialists, institution-
based, high-volume users with large clienteles, they
are open to input regarding therapy, and they do not
tend to change dosages for refills. Brand A tends to
be utilized where costs are a concern, such as in med-
ical institutions. Segment 2 specialists are office-
based, private practice MDs. They deal with older pa-
tients and are more likely to change dosages. They
are innovators, which explains the high Brand F and
Brand G usage. Finally, specialists in Segment 3 tend
to be child specialists with private practices located
in large urban areas. They are low-volume prescrib-
ers in this therapeutic category, which suggests that
their clientele is smaller, and they adhere to more
conservative prescription policies.

5. Discussion
There are a number of important features of the pro-
posed methodology. First, it provides a simple and
flexible way to impose within- and between-segment
constraints on segment-specific covariance matrices.
As a consequence, it is effective in identifying parsi-
monious solutions to segmentation problems that can
be easily interpreted. Second, when the common fac-
tor structure has three dimensions or less, the method
also provides a parsimonious graphical display of the
data. Researchers seeking to apply our procedures
are free to choose a two-dimensional representation
(at the cost of a reduction in fit) that provides a very
parsimonious graphical representation, similar to that
used in biplots or correspondence analysis. The mul-
tivariate covariance structure induced by common
factors is intuitively represented terms of angles be-
tween vectors representing the variables (brands).
Thus, rather than needing to peruse several tables
with parameter estimates, managers can very quickly
grasp the structure of the data and the implications
for strategy. As a result of using this methodology,
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marketing practitioners can quickly identify both cus-
tomer target segments where their products are/are
not preferred, and which products need to be mar-
keted against to improve overall market performance.
Moreover, the available graphical displays make it
easier to communicate these strategic issues to others
in their organization. It is our conjecture that these
graphical displays will have a much more profound
impact on strategy given the great capacity that hu-
mans have for fast processing and accurate recall of
graphical information. The proposed graphical dis-
play is very general and allows for the representation
of a wide range of data used to support strategic de-
cisions including market segmentation, customer sat-
isfaction, competitive positioning, and customer val-
ue perception. In addition, in such applications,
identifying restrictions may be derived from substan-
tive theory, similar to confirmatory factor analysis.

We believe that our contribution to the literature is
mostly technical. The issue of identifying factor mod-
els in different latent groups has not been dealt with
before in the way we address it. Our method enables
managers to quickly grasp the basic structure of a
dataset visually. The structure that we identify may
have interesting substantive interpretation in many
applications. Graphical representation of data hinges
strongly upon data reduction techniques. We attempt
to reduce the dimensionality of a two-way, two-mode
dataset in two directions simultaneously: We reduce
the rows of the dataset through the assumption of
discrete latent segments and the columns through the
assumption of continuous latent variables. Most of the
interpretation of the latent structure of marketing
data to date has been based on one of those two
modes: either a factor model to reduce the variables
dimension, or a latent class model to reduce the sub-
jects dimension.

The power of factor models to provide a represen-
tation that lends itself to interesting substantive in-
terpretations, based on the covariance pattern in the
data, is well established. The correlation structure of
the variables is reduced and depicted in a way that
allows for easy interpretation. Although a similar in-
terpretation can be obtained from the original seg-
ment level correlation matrices derived from Wolfe’s

(1970) model, we would like to emphasize that the
three circular graphs that we provide are much easier
to interpret and the results can be communicated
much faster through these graphs than through the
original correlation matrices. In the case of our drug
prescription application, obviously the differences in
mean prescription rates between the segments are
important for substantive interpretation. Different
groups of physicians have different overall tendencies
to prescribe drugs. Our model offers the advantage
of conveniently depicting the basic structure of the
within segment covariance matrix, and in the appli-
cation displays which drugs, within a segment of
physicians, tend to be prescribed together. If a mar-
keter wants to target the particular segment in ques-
tion, that could give important clues for the bundling
and cross-selling strategies of drugs.
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