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Abstract

Increasingly, spatial econometric methods are becoming part of the standard toolkit of applied researchers in agricultural,
environmental and development economics. Nonetheless, applications in discrete-choice settings remain few and despite its
appeal, applications of the Bayesian paradigm in these settings are still fewer. We provide a primer to the Bayesian spatial
probit with the objective of making accessible to non-users a class of iterative estimation methods that have become fairly
routine in Bayesian circles, offer an extremely powerful addition to applied researchers toolkits, and are essential in Bayesian
implementation of spatial econometric models. We demonstrate the methods and apply them to estimate the ‘neighbourhood
effect’ in high-yielding variety (HYV) adoption among Bangladeshi rice producers. We estimate the strength of this relationship
using a standard, spatial probit model and compare the policy conclusions with and without the neighbourhood effect included.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

Discrete-choice models abound in many areas of
agricultural economics, including technology adop-
tion and land-use decision making. Inevitably, these
problems are characterised by some form of spatial
dependence. Although accounting for spatial interac-
tions is becoming prevalent in applications involving
continuous dependent variables, such aspects are
rarely incorporated into discrete-choice models. The
importance of accounting for spatial dependence in
these situations cannot be over-emphasised. In many
commonly applied models with a cross-sectional
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element, ignoring spatial relations can render con-
ventional estimators inconsistent and/or biased. In
some cases, spatial parameters also have important
policy relevance. For example, the spatial autore-
gression parameter (the ‘neighbourhood effect’) in a
technology adoption setting contains important policy
information for public policy planning (Case, 1992).
Knowledge of the location and scale of its distribution
can be important in informing extension agents and
planners about the likelihood that initial investments
will generate further ‘secondary’ or ‘copy’ adoption
in a locality. And this information, in turn, can aid
decision making so that research portfolio and public
investment schedules are optimised.

One reason likely for the paucity of spatial discrete-
choice modelling is the complexity that it entails. Most
of the available methods involve multidimensional
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integration. Bayesian techniques incorporating Mar-
kov-chain Monte-Carlo (MCMC) methods provide a
powerful means to circumvent these problems. The ad-
vantages of this approach compared to available alter-
natives include non-reliance on asymptotic properties
to ensure validity and generation of standard errors as a
by-product of the estimation algorithm. The Bayesian
approach provides a powerful alternative to conven-
tional sampling theory techniques in handling many
tricky issues that confront applied spatial research
(Anselin, 1988). Currently in agricultural economics,
however, application of the Bayesian paradigm is not
widespread. Our objective in this paper is to provide
a step-by-step approach to the Bayesian spatial probit
demonstrating its reliance on basic building blocks
with which many of us are familiar and as a by-pro-
duct, demonstrating the full power of a class of tech-
niques that are now becoming common place in other
areas of applied research.

We focus attention on one of the two Bayesian
models that have been applied recently to implement
truncated and discrete-choice data, namely, the spa-
tially autoregressive probit (SARP) model, which is
the framework of choice for modelling new technol-
ogy adoption and is the model applied in the empiri-
cal section of the paper. Pedagogically, the Bayesian
spatial probit is but a step-wise generalisation of the
MCMC routine that is required to estimate the stan-
dard, normal-linear model. Because it represents the
cornerstone of almost all MCMC work in applied
Bayesian science and our main objectives are peda-
gogic, the normal model provides a natural starting
point from which to incorporate additional compu-
tational and institutional detail. A focus on normal
data provides, thus, ideal motivation for understand-
ing the additional difficulties that spatial dependencies
entail.

Section 2presents an introduction to MCMC meth-
ods using normal data and outlines the Gibbs sampling
algorithm that is the backbone of the spatial probit
algorithm. This introductory section is intended for
readers who are unfamiliar with Markov-chain meth-
ods and perhaps, the Bayesian view.Section 3extends
the basic method to a spatial econometric model with
continuous left-hand side data and incorporates two
trivial modifications to derive the spatial probit algo-
rithm. Section 4introduces institutional detail rele-
vant to the empirical application and introduces the

Bangladeshi data andSection 5presents the results
of the spatial probit algorithm applied to the data.
Conclusions are offered inSection 6. Throughout, the
emphasis is on routine application of MCMC to solve
complexities arising due to spatial dependence.

2. Demonstrations using normal data

Suppose datay ≡ (y1, y2, . . . , yN)
′ are normally

distributed with unknown mean,µ, and unknown vari-
anceσ 2 so that the data-generating model is

yi = µ+ εi (1)

i = 1,2, . . . , N ; whereµ denotes the mean of the
distribution for y; εi the random error term that is
normally distributed with mean zero and varianceσ 2;
and hence, we may write, in a standard notation,ε1,
ε2, . . . , εN ∼ iid N(µ, σ 2). We observe the data,y,
but do not observe the errors,ε ≡ (ε1, ε2, . . . , εN)

′,
nor the parametersµ and σ ; and the objective is to
make efficient use ofy in deriving inferences aboutµ
andσ .

Eq. (1), together with the distributional assump-
tion on the error term, is sometimes referred to as the
‘normal-means model’. Because this data-generating
model is so familiar it serves as a natural starting
point from which to introduce a generic notation that
we retain throughout the demonstrations. We continue
to usey ≡ (y1, y2, . . . , yN)

′ to denote data but use
f A(b|c, d, . . . , z) to denote a probability density func-
tion (pdf) for the data where the symbols ‘A, b, c, d,’
and ‘z’ denote, respectively, the form of the density,
its argument, and any parameters that are needed to
charaterise its location and scale, skewness, kurtosis,
and so on. This approach is important and fairly stan-
dard in Bayesian developments where conditioning is
of paramount importance.

It is important to note for later developments that the
functionf(·) is in the form of aconditional pdf. Some-
times this conditioning will play a pivotal role in deriv-
ing efficient estimation strategies and sometimes it will
not, and we make a point of symbolising when condi-
tioning is important through the notationf(·|·) (the vari-
ables preceding the slash depending on the ones that
follow). In the context of the data-generating model
f A(b|c, d, . . . , z), our task is to use observable data
‘b’ to make inferences about variables (parameters)
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‘c, d, . . . , z,’ which we will refer to collectively as the
unknowns, or, compactly, byΘ,Θ≡(c, d, . . . , z)′.

The point of departure between the present con-
tribution and others within thisSpecial Issue, is the
single observation that, because the parameters inΘ

are unknown they are, of course, random and have,
therefore, associated probability distributions. In other
words, for the purpose of developments in terms of
Θ , recognition that its elements are unknown implies
that they are ‘random’.

It is this step and this single step alone from which
all subsequent developments emanate and it is im-
portant to bear this mind as we develop our MCMC
strategy to estimate the Bayesian spatial probit model.
This application requires two inputs, namely a like-
lihood for the entire data, which we denote�(Θ|y),
and a prior pdf characterising uncertainty about the
unknown parameters, which we denoteπ (Θ). The
assumption that the errors are independent allows
us to multiply the individual normal densities com-
prising the likelihood into the form�(Θ|y) ≡ �i
f N(yi |µ, σ), which, when viewed as a function of the
complete data,y, is observed to have the normal form

�(Θ|y) ≡ f N(y|ιNµ, INσ) (2)

where ιN (Greek ‘i’ with subscript ‘N’) denotes an
N-dimensional unit vector andIN denotes theN ×N
identity matrix. To draw inferences aboutΘ , we will
update between the prior pdfπ (Θ) and the posterior
pdf π(Θ|y) making use of Bayes’ rule

π(Θ|y) ∝ �(Θ|y)π(Θ) (3)

The right-side ofEq. (3)omits the scale factor that
makes the integral of the left side equal to one and
hence, justifies its interpretation as a true pdf. The fact
that we are able to avoid the computations implied by
the integrals

f (y)=
∫ θ̄k

θ
¯k

∫ θ̄k−1

θ
¯k−1

· · ·
∫ θ̄2

θ
¯2

∫ θ̄1

θ
¯1

�(θ1, θ2, . . . , θk|y)

×π(θ1, θ2, . . . , θk)dθ1, dθ2, . . . ,dθk−1 dθk

(4)

is worth stressing because it is precisely these com-
putations that are the major stumbling blocks to the
widespread application of the Bayesian paradigm.
Although noteworthy exceptions exist (see, for ex-
ample, the papers cited byDorfman (1998)), this

development seems to have been more retarded in the
agricultural economics literature than elsewhere. The
advent of MCMC has, of course, changed this situ-
ation elsewhere and will do the same in agricultural
economics—once the full power of the technique is
widely accepted. With this goal in mind, it is useful
to note that the term on the right-hand side ofEq. (4)
is themarginal likelihood for the data, a quantity that
plays a pivotal role in model comparisons. We will not
undertake model comparisons in this paper, although
it is useful to note that the methods presented can be
extended in a simple way to assess model probabili-
ties (Chib, 1995; Chib and Jeliazkov, 2001). The main
point for computational gains is that, becausef(y) is
not a function ofΘ we can ignore it in subsequent
developments concerningΘ . These subsequent de-
velopments will typically involve the characterisation
of marginal pdfs for the model parameters and the
difficult task confronting us is the derivation of these
marginal quantities from the joint posterior through
the integrations

π(θj |y)=
∫ θ̄k

θ
¯k

∫ θ̄k−1

θ
¯k−1

· · ·
∫ θ̄j+1

θ
¯j+1

∫ θ̄j−1

θ
¯j−1

· · ·
∫ θ̄2

θ
¯2

∫ θ̄1

θ
¯1

×π(θ1, θ2, . . . , θk|y)dθ1, dθ2, · · · ,dθj−1

× dθj+1 · · · dθk−1 dθk (5)

Derivation of the marginal distribution of an un-
known quantity of interest is the target of a Bayesian
investigation. Problems arise when the marginal den-
sity may not exist (not considered here); or, if the
marginal density exists but may not have moments that
do (considered in the empirical section); or, when the
marginal pdf exists but may not have a form for which
the integrating constant (the constant that makes the
area beneath the density sum to one) is available in
closed form. It is precisely this latter situation in which
MCMC and a special case, the Gibbs sampler, have
particular advantages in exploiting conditional depen-
dencies that prevail in almost all statistical settings.
When the marginal distributions are not available in
closed form, but the fully conditional distributions,
π(θj |θ1, θ2, . . . , θj−1, θj+1, . . . , θk, y) satisfy weak
regularity conditions (Gelfand and Smith, 1990) and
are easy to sample from, the Gibbs sampler provides
an extremely powerful and easy-to-implement ap-
proach to simulate draws from the marginal pdf. In



386 G. Holloway et al. / Agricultural Economics 27 (2002) 383–402

short, the Gibbs sampler provides a route for sam-
pling from the marginal pdf even though we cannot
express it explicitly. And when the fully conditional
distributions are not all available in closed form a
generalisation of the Gibbs sampler known as the
Metropolis–Hastings algorithm can then be used to
simulate from the target distribution. Although it re-
quires more computation time than the Gibbs sampler,
it is just as powerful and is more versatile due to the
fewer conditions that are required for its use. Two
examples will help to demonstrate.

2.1. The Gibbs sampler

In the normal-means set-up, the marginal distribu-
tion forµ, is at distribution which, in its non-standard-
ised form, is characterised by its mean,µ̂ ≡
(ι′NιN)

−1ι′Ny; its d.f., ν≡N − 1; and its scale,̂σ 2 ≡
(y − �Nµ̂)

′(y − �Nµ̂)/ν. The marginal distribution
for σ is an inverse-gamma distribution with degrees
of freedomν and scaleσ̂ 2. The two marginal dis-
tributionsπ(µ|y) ≡ f T (µ|µ̂, ν, σ̂ 2) andπ(σ |y) ≡
f IG(σ |ν, σ̂ 2)) offer a complete description of the
unknown quantities and are the target of the exer-
cise. Although these marginal distributions are easily
obtained by direct integration, we are interested in
characterising them through the Gibbs sample, for
which we require the full conditional distributions.
To derive these distributions we need to first establish
the form of the joint posterior

π(µ, σ |y)∝σ−(N+1)exp

{
1

2σ 2
(y−ιNµ)

′(y−ιNµ)

}

(6)

which evolves from combining the non-informative
prior π(µ, σ) ∝ σ−1 (Jeffreys, 1961; Zellner, 1996,
p. 708), with the likelihood (Eq. (2)) via Baye’s
rule (Eq. (3)). The full conditionals areπ(µ|σ, y) ≡
f N(µ|µ̂, σ ) and π(σ |µ, y) ≡ f IG(σ |ν, s2), s2 ≡
(y − ιNµ)

′(y − ιNµ)/ν, which we obtain from the
joint distribution simply by viewing it solely as a func-
tion of a single unknown quantity and then identifying
that the resulting form is well known. The Gibbs sam-
pler operates by iterating sequentially between these
two conditional distributions drawing, in turn, an
inverse-gamma random variable and a normal random
variable. ForS sufficiently large, and a starting value

Table 1
Experimental data

Normal means,yi Regression

yi xi

−0.26 −5.35 4.82
−0.36 1.93 −5.17

0.61 10.69 −11.05
−0.70 19.56 −14.32
−2.38 1.11 −1.44

0.44 10.45 −10.89
−3.60 −8.33 8.37
−1.79 −5.46 −2.77
−1.13 6.40 −3.08
−0.56 −4.24 1.58

ŷ = −0.97 ŷ = 2.68 x̂ = −3.39
σ̂ = 1.23 σ̂ = 8.52 σ̂ = 6.87

Data in column 1 generated randomly fromEq. (1); data in columns
2 and 3 generated randomly fromEq. (8).

µ = µ0, the Gibbs samples{σ (s), s = 1,2, . . . , S}
and{µ(s), s = 1,2, . . . , S}, obtained by the sequence
σ 1 ∼ f IG(σ |ν, µ0), µ1 ∼ f N(µ|µ̂, σ 1), . . . , σ s ∼
f IG(σ |ν, µs−1), µs ∼ f N(µ|µ̂, σ s) provides accu-
rate estimates of posterior moments and indeed, the
marginal distributions themselves.Figs. 1–3present
results for the Gibbs sampler applied to the nor-
mal data inTable 1. The datay are generated from
f N(yi | − ι10, I10) and generate a posterior mean
µ̂ = −0.97 and sample variancês2 = 1.23. Fig. 1
presents plots of the first 50 iterations in the Gibbs
sample based on the start valueµ0 = (ι′N ιN)

−1ι′Ny

andFigs. 2 and 3compare the frequencies of draws
obtained from the first 1000 iterations of the sample
with frequencies generated by the target pdfs. The
figures illustrate three important points. First, inde-
pendent of the starting values, the draws mimic the
actual draws one expects to obtain in draws from the
true marginal pdfs. Second, few iterations are required
before the Gibbs sequence converges to the true pdfs.
Third, when it is emphasised that there are only 10
observations in the sample, convergence is obtained
under very limited information.

2.2. Random walk Metropolis–Hastings sampling

When the full conditional distributions are not avail-
able in closed form a more general set of iter-
ation methods must be invoked. One of these—
the focus in empirical work—is the random walk
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Fig. 1. Gibbs sample draws from the normal-means model. Plots of the first 50 draws in the Gibbs sample based on the 10 observations
drawn fromN(−1,1) (column 1,Table 1) and start valueµ0 = (ι′N ιN)

−1ι′Ny. The data correspond to the normal-means model as specified
in Eq. (1). Note that the true parameter values areµ = −1 andσ = 1.

Fig. 2. Comparisons of simulated and true frequencies from the normal-means model. Plots of simulated frequencies (filled bars) for sigma
from the Gibbs sample versus true frequencies (unfilled bars) from the inverse-gamma distribution corresponding to the normal-means
model in Eq. (1).
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Fig. 3. Comparisons of simulated and true frequencies from the normal-means model. Plots of simulated frequencies (filled bars) forµ

from the Gibbs sample versus true frequencies (unfilled bars) from thef T (µ|µ̂, ν, σ̂ ) distribution corresponding to the normal-means
model in Eq. (1).

Metropolis–Hastings (RW) algorithm. Although its
roots are old (Metropolis et al., 1953; Hastings, 1970),
it is difficult to locate applications of the technique
in agricultural economics. The RW algorithm is but
one of many variants of a basic accept–reject proce-
dure which are suitable to model spatial dependence.
Space limitations prevent reporting results across an
array of models that the authors experimented with
in the course of this project; but the RW algorithm
proved considerably superior in terms of execution
time and provided accurate estimates of system pa-
rameters with minimal fuss. Like the Gibbs sequence,
the RW sequence generates a Markov chain with de-
sirable convergence properties; but, unlike the Gibbs
sampler only a subset of the proposed draws in the
algorithm are accepted. This key difference makes
the search for ‘efficient’ strategies to improve the
basic algorithm desirable and this goal is an ongoing
focus in statistical research (see, in particular,Raftery
and Lewis, 1992; Robert, 1995; Gilks et al., 1996).
Continuing with notation developed previously, and
the normal-means example, suppose that we wish
to simulate a draw from the target densityf(µ|·),
which is not of a standard form. We obtain a draw—

a ‘proposal’—from another distribution that, among
other properties, is known (known integrating con-
stant) and is easy to sample from, and we accept and
reject the proposals based on a probability rule that
results in the accepted sequence of draws generating a
Markov chain that, eventually, converges to the target
distribution. Usem to denote the proposal value and
usefP(m|·) to denote the proposal density. In general,
the proposal density can be conditional on a prior
draw for the parameter of interest and hence, let us
usefP(m|µ) to denote the conditioning. The defining
feature of the RW algorithm is that the current draw
for the parameter,m, depends on the previous draw,µ,
through a random walk. In other words, the proposal
and current values are related through the condition

m = µ+ ε (7)

where ε is a random perturbation with distribution
f P(ε) that is independent ofµ (and therefore,m).
It follows from Eq. (7) that the proposal distribution
has the formf P(m − µ) and we consider a second
experiment.

Suppose that the distribution forε is the stan-
dard normal distributionf P(ε) = f N(ε|0,1). The
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distribution form is f N(m|µ,1) and we proceed by
successively drawing from the normal distribution
with mean the current drawµ and variance one. Then,
the following steps simulate draws from the target dis-
tributions of interest (Robert and Casella, 1999). Step
1: generate a starting valueµ = µ′. Step 2: generate
m ∼ f P(m|µ). Step 3: generateµ ∼ f U(µ|0,1).
Step 4: ifµ ≤ f (m)/f (µ) setµ = m. Step 5: return
to step 2.

Fig. 4 presents plots of the first 50 iterations of the
Gibbs sequence with the draw forµ simulated by the
RW step. The draws are quite similar to the draws
from the Gibbs sample and they mimic the values of
the actual parameter values used to generate the data.
Figs. 5 and 6present plots of the histograms generated
by the first 1000 draws. The simulated densities are
quite close to the actual target densities. In summary,
the RW algorithm provides a versatile alternative to the
Gibbs sampler to simulate draws from the two target
distributions.

The methods applied in this section are the build-
ing blocks of almost all the variants of the Gibbs

Fig. 4. Random walk Metropolis draws from the normal-means model. Plots of the first 50 draws in the Gibbs sample based on the 10
observations drawn fromN(−1,1) (column 1,Table 1) and start valueµ0 = (ι′N ιN)

−1ι′Ny. The data correspond to the normal-means
model as specified inEq. (1). Note that the true parameter values areµ = −1 andσ = 1 and that the patterns of the two series resemble
closely those of the Gibbs draws inFig. 1.

sampler and the Metropolis–Hastings algorithm that
appear in the literature. Collectively, these steps pro-
vide an extremely powerful tool kit from which the
investigator can launch more sophisticated analyses.
Nowadays, Bayesian research is not constrained by
the need to provide numerical approximations to dif-
ficult integral calculations by area methods such as
Simpson’s rule. Freed from the constraints that these
integrations have in past bound investigations, we are
now in a position to extend the normal-means frame-
work to the target setting of spatial probit estimation.
A manipulation that aids this link and is important
in subsequent developments is to writex ≡ ιN and
β ≡ µ in the data-generating model in (3) and re-
call the definitions of the means and variances in the
original model, namelyµ̂ ≡ (x′x)−1x′y ≡ β̂ and
s2 ≡ (y − xβ)′(y − xβ)/ν, with x, anN × K ma-
trix of observations on a set or relevant covariates and
hence,β denotes aK-vector andν ≡ N−K. Thus, the
normal-linear regression model has also been accu-
rately simulated through the Gibbs and random walk
Metropolis–Hastings algorithms.
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Fig. 5. Comparisons of simulated and true frequencies from the random walk Metropolis draws from the normal-means model. Plots of
simulated frequencies (filled bars) for sigma from the Gibbs sample using a random walk Metropolis step versus true frequencies (unfilled
bars) from the inverse-gamma distribution. Note that the two distributions are almost identical.

Fig. 6. Comparisons of simulated and true frequencies from the normal-means model. Plots of simulated frequencies (filled bars) forµ

from the Gibbs sample using a random walk Metropolis step versus true frequencies (unfilled bars) from thef T (µ|µ̂, ν, σ̂ ) distribution.
The two distributions are virtually identical.
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3. Spatial models

The previous section based on the normal-means
(normal-linear regression) model serves to illustrate
the powerful way in which the various algorithms
serve as alternatives to conventional approaches (di-
rect integration in the case of normal data) to derive
inferences with respect to a target marginal distribu-
tion. But the normal data environment is, of course,
simplistic and the results of the demonstrations, par-
ticularly the accuracy of the derived distributions, can
be questioned. Such scepticism is, we show, unmer-
ited because the two spatial models of interest—the
spatial autoregressive (SAR) model and the SARP
model—are but simple extensions of the normal-linear
framework.

A principal source of information for learning about
these models in the Bayesian environment are the pa-
pers (LeSage, 1997, 2000, 2002) and much of what
we present in this section is a ‘resampling’ of some of
this work, together with several personal communica-
tions about various sampling issues. We now continue
a step-by-step development of the extensions from the
normal regression model that are needed in spatial in-
ference. Unlike that model, spatial problems generate
distributions for which the marginal pdfs are not avail-
able in closed form and require application of MCMC
methods. In this case, measures of accuracy are now
no longer available for all of the parameters in ques-
tion. Nevertheless, it is possible with what we have
established so far to give a heuristic indication of what
a correctly implemented algorithm should produce.

Before presenting results from simulated probit
data, we consider the standard spatial framework,
where the dependent variable is a known continuous
measure of observed data. The development is similar
to that ofAnselin, 2002(this issue). We are concerned
with the model

y = ρwy + xβ + ε (8)

wherey(N×1) ≡ (y1, y2, . . . , yN)
′ denotes observa-

tions on a dependent variable of interest across spa-
tially delimited units,i = 1,2, . . . , N ; ρ(1×1) denotes
correlation between units;w(N×N) denotes a spatial-
weight matrix, defined in more detail, subsequen-
tly; x(N×K) ≡ (x1, x2, . . . , xK), x1(N×1) ≡ (x11,

x21, . . . , xN1)
′, x2(N×1) ≡ (x12, x22, . . . , xN2)

′, . . . ,
xK(N×1) ≡ (x1K, x2K, . . . , xNK)

′ denotes observa-

tions on the covariates;β(K×1) ≡ (β1, β2, . . . , βK)
′

denotes the ceteris paribus relationship betweenx

and y; and ε(N×1) ≡ (ε1, ε2, . . . , εN)
′ denotes ran-

dom error, which, we assume, is distributed normally
with mean zero and covarianceσ 2IN ; in other words,
ε ∼ f N(ε|0N, σ 2IN), where0N is the length-N null
vector andIN is the dimension-N identity matrix.
The econometrician observesx, w andy and makes
inferences aboutρ, β andσ .

Eq. (8)is the data-generating equation for the SAR
model. The SAR model is one of two conventional
specifications discussed in the literature. The other
model allows for correlations among errors across the
spatial units. Our main interest in the empirical part
of this paper concerns correlation across the depen-
dent variables (not the errors) and so, for this reason
and the interests of space, we focus on the SAR for-
mulation. Developments for both models are present
neatly inLeSage (2000), Eqs. (1)–(7). The empirical
application to follow motivates the spatial correlation
parameter,ρ, and the important spatial-weight matrix,
w. Suppose that our interest lies in estimating the
correlation across crop yields in contiguous settings
(a situation only slightly dissimilar from our empiri-
cal application) and suppose that, perhaps for policy
purposes, we are interested in estimating the extent to
which yields in associated areas are correlated; areas
with high yields, presumably, associated with con-
tiguous high-yielding areas, and so on. In this setting
w represents an assignment of ones and zeros corre-
sponding to contiguous areas, such that,wij = 1 if ob-
servationsi andj are in the same ‘location’ andwij =
0, otherwise,i, j = 1,2, . . . , N, i �= j . We assume
that the correlation between an observation unit and
itself is zero and hence, thatwii = 0, i = 1,2, . . . , N .
In most practical applications of this model it is cus-
tomary to normalise each row ofw such that each of
the Ni (<N) contiguous units affecting observationi
has oneNi th contribution to the total impact oni; but
this normalisation is not necessary. The conditionρ �=
0 implies correlation within locations and forces en-
dogeneity (qua simultaneity) between the crop yields;
and the conditionρ = 0 implies that there is no corre-
lation and forces the model to collapse to the standard
multivariate model, which can be handled without the
need to Gibbs sample (Zellner, 1996). The analogy
in the non-spatial context is simply the difference be-
tween a simultaneous-equations set-up and its reduced
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form and the presence of non-zeroρ is the defining
distinction, indeed theraison d’être for the MCMC
approach. But more precisely,it is the combination of
the combined impacts of w and ρ that lead to endo-
geneity, and whereasρ denotes an unobserved param-
eter with an associated probability distribution that
must be estimated,w denotes given data. It is useful to
note in passing that it would be desirable toestimate
the elements ofw but that the most useful parameter-
isations lead to identification problems. We suspect
that the development of more robust specifications of
w is, perhaps, the most fruitful avenue for advances in
spatial methods, at least where adoption issues are the
focus. Finally, this statement assumes deeper meaning
when it is recognised that (at least, in experimental
settings) the choices ofw andρ are not independent.
In fact, asAnselin (1988)shows any draw forρ in a
Metropolis–Hastings scheme must satisfy

ρ
¯

≤ r ≤ ρ̄ (9)

whereρ
¯

is the inverse of the minimum eigenvalue of
w andρ̄ is the inverse of the maximum eigenvalue.

With reference to (8), in the caseρ = 0, we have
the normal-linear model and all of the previous re-
sults go through, with the reinterpretation thatK = 1
andµ(1×1) = β(K×1) andx(N×K) = ι(N×1). Conse-
quently, the extension to consider spatial effects rests
importantly on the distribution forρ. We will follow
the practice outlined above and use a non-informative
prior pdf for the unknownsΘ≡(ρ,β, σ )′, form the
likelihood for the unknowns conditional on the data,
y; and study the form of the resulting posterior as a
starting point to formal analysis. The posterior is

π(Θ|y)∝ |A|σ−(N+1) exp

{
1

2σ 2
(Ay−xβ)′(Ay−xβ)

}

(10)

whereA(N×N) ≡ IN − ρw arises from the Jacobian
of the transformation betweeny and ε. It is impor-
tant for later developments to recognise that the ma-
trix A contains the unknown parameterρ and that,
when ρ = 0, A = IN and the model reduces to
the normal-linear regression model. However, even for
non-zero correlation, the joint posterior forΘ is very
similar to the posterior for the normal-means model
and so, many of those same concepts prevail. Because
there are now three components of interest, we must

fix two of these constant when developing the Gibbs
strategy for estimation. First, in deriving the condi-
tional distribution forσ , we treatβ andρ as known
constants. Givenβ andρ, inspection of (10) and com-
parison with (Zellner, 1996(a.37)) reveals that the
posterior forσ has the form

π(σ |β, ρ, y) ∝ f IG(σ |ν, s2) (11)

an inverse-gamma distribution withν ≡ N ands2 ≡
(Ay − xβ)′(Ay − xβ)/ν. Hence, the dependence of
σ on β, ρ and y is throughs2. Second, holdingσ
andρ constant, the posterior is in an identical form to
the multivariate regression model with the dependent
variable redefined to bez(N×1) = Ay. Consequently,
all of Zellner’s results (Zellner, 1996, pp. 65–66) go
through with this reinterpretation and we find that the
conditional distribution forβ, has the form

π(β|ρ, σ, y) ∝ f N(β|β̂,V
β̂
) (12)

β̂ ≡ (x′x)−1x′z andV
β̂

≡ σ 2(x′x)−1. Thus, the full
conditional distribution forβ is multivariate normal
with meanβ̂ and covariance matrixV

β̂
. Finally, with

σ andβ assumed fixed, we observe that the form of
the posterior forρ is precisely the form of the joint
posterior (10). That is,π(ρ|σ,β, y) ∝ π(Θ|y) and
no further simplification is possible. Due to the ap-
pearance of the determinant resulting from the Ja-
cobian transformation, this density does not have a
well-known form and hence, we are in the situation
motivated previously of requiring the application of a
Metropolis–Hastings step to simulate draws forρ.

As we outlined above in the case of the RW algo-
rithm, we will need a proposal density from which to
generate draws. The normal distribution is a natural
choice in each of the three cases due to the fact that,
net of the Jacobian term, |A|, the fully conditional den-
sity for ρ is normal with known mean and variance.
More precisely, by completing the square inρ it is
possible to write forρ

π(ρ|σ,β, y) ∝ |A|
× exp

{
1

2σ 2
(ρ − ρ̂)′(wy)′(wy)(ρ − ρ̂)

}
(13)

where ρ̂ ≡ ((wy)′(wy))−1(wy)′(y − xβ). Hence,
π(ρ|σ,β, y) ∝ |A|f N (σ |ρ̂,V ρ̂), whereV ρ̂ ≡ σ 2

((wy)′(wy))−1. The fact that the full conditional dis-
tribution for ρ contains a normal component makes it
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sensible to choose as the proposal distribution a nor-
mal density. And this is what we do in the demonstra-
tion that follows.

In the experiment we use the data inTable 1(column
2), which are simulated from the model (8) withΘ =
(ρ, β, σ )′ = (−0.75,−1.0,1.0)′ and (column 3)x ∼
f N(x|0N,10IN). In each of the three cases we sam-
ple sequentially with the insertion of an additional step
to simulate the draw forρ, the conditional pdf of which
is not available in known form. We user to denote the
candidate draws from the proposal density and useρ to
denote an accepted draw. Some experiments suggested
that an acceptance rate of around 50% produced stable
estimates in a timely manner and we endogenised the
step size of the RW algorithm by allowing the stan-
dard deviation in the random walk error,ξ , to increase
(respectively, decrease) by a scale factor 1.1 whenever
the acceptance rate exceeded the upper bound from
below (exceeded the lower bound from above) in a
band set at acceptance rate limits of 40 and 60%.

Fig. 7plots the first 100 draws in the Gibbs sequence
with the RW step inserted. The sequence was quick to
converge and produced draws for each of the three pa-
rameters that are close to the given values used to gen-

Fig. 7. Random walk Metropolis draws from the SAR model. Plots of the first 50 draws in the Gibbs sample for the SAR model with a
random walk Metropolis step forσ (solid line), ρ (dotted line) andβ (dashed line) based on the 10 observationsTable 1(columns 2 and
3) and start valuesµ0 = (ι′ι)−1ι′y′, ρ = 0. The true parameter values areσ = 1, ρ = −0.75 andβ = −1.

erate the data, namely(ρ, β, σ )′ = (−0.75,−1,1).
The sample was obtained in less than a minute of real
time.Fig. 8presents plots of the histograms forρ gen-
erated from the experiment. The distribution is centred
close to the given parameter value (−0.75) and is ap-
proximately normal. Experiments with different start
values generated almost identical distributions and
we conclude that the RW–Gibbs sequence produces
robust estimates of the SAR model parameters.

3.1. Random walk Metropolis sampling the
Bayesian spatial probit

Our final demonstration is the framework we apply
to the empirical model introduced in the next section.
Having provided a heuristic justification for the meth-
ods in the context of continuous sample data,y, we
consider the application of the RW algorithm to the
spatial probit model. With reference to (8), we are now
concerned with the model

z = ρwz + xβ + ε (14)

and we observeyi = 1 if zi > 0 andyi = 0, otherwise.
Hence, the components ofz ≡ (z1, z2, . . . , zN)

′ as
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Fig. 8. Random walk Metropolis draws from the SAR model. Plots of simulated frequencies forρ in the SAR simulation using a random
walk Metropolis step. The true parameter value isρ = −0.75.

opposed toy ≡ (y1,y2, . . . ,yN)
′ are latent and in

terms of our desire for step-by-step development, we
have introduced one additional unknown into the
model. Consequently, the Gibbs sampling algorithm
will require one additional step for its implementation
and that step—as one might expect—is to obtain a
draw for the latent endogenous variable,z, from its
fully conditional distribution. This distribution is obt-
ained by interpreting the posterior solely as a function
of the unknown vectorz and by completing the square
in the exponential part of the normal kernel. The prod-
uct is the truncated, multivariate-normal distribution

π(z|ρ, σ,β, y) ∝ f TN(z|ẑ,V ẑ) (15)

whereẑ ≡ (A′A)−1A′xβ andV ẑ ≡ σ 2(A′A)−1 and
the truncation satisfies the conditions stated in the
data-generating model (14). Although this single step
is but a slight complication over the SAR algorithm,
drawing from this conditional distribution can pose
problems. This is because a simple acceptance scheme
whereby the latentz is accepted ifeach component sat-
isfies the inequality constraints has a very small chance
of acceptance. Except for very small problems, this
method is computationally impractical. The approach

suggested byGeweke (1992)and adopted previously
by LeSage (2002)is to use the acceptance scheme on
the fully conditional distributions for each of the com-
ponents of the vectorz. However, this approach can
still result in an unreasonably large number of rejected
draws. The alternative is to retain the conditional ap-
proach but use efficient one-for-one draws by apply-
ing the probability integral transform (e.g.Mood et al.,
1974). We found that both methods generated accurate
estimates, but that the probability integral transform
method was far superior in terms of execution time.

One additional modification to the previous algo-
rithm is required prior to implementation. This adjust-
ment is to fix one of the unknown parameters in order
to identify the other unknowns in the model. This is the
familiar scaling problem arising in conventional probit
estimation because the probit model is valid only up to
a scalar transformation. The usual practice, which we
adopt here, is to fix the variance at one. Hence, (14)
is implemented by imposing the restrictionσ = 1.

An experiment uses the second and third columns of
Table 1. Note in column 2 that four of the endogenous
values are positive and six are negative. If we simulate
draws assuming that these binary outcomes represent
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Fig. 9. Random walk Metropolis draws from the SARP model. Plots of simulated frequencies forρ in the SARP simulation using a
random walk Metropolis step. The true parameter value isρ = −0.75.

the observed data we expect to obtain draws for the
latent data that are centred about the endogenous
y values. This essentially, is the case and although
space prohibits reporting the probability distribution
so obtained, the histogram forρ is only slightly dif-
ferent from the distribution obtained from the spatial
model with observable, continuous response data.
Fig. 9compares the draws for the spatial econometric
model (SAR) and the spatial probit model (SARP).
The simulated frequencies from the SARP model are
the unfilled bars and the frequencies simulated by
the SAR model are the filled bars. Both sets of fre-
quencies are generated from a Gibbs sample of 1000
accepted draws. The start values forρ in the two mod-
els are the same and we follow a suggestion in Albert
andAlbert and Chibs (1993)usingz0 = y as the start
value in the spatial probit algorithm. Experiments
with other start values suggest that the results are in-
dependent of this choice. Except for some skewness
in the draws from the probit model, the frequencies
generated by the two models are remarkably similar.

In summary, the Gibbs sampler provides an ex-
tremely powerful technique for simulating from a

marginal distribution that is not available in closed
form. The addition of a Metropolis step within the
algorithm provides considerable versatility that fa-
cilitates estimation of spatial econometric and spa-
tial probit models. The technique is attractive and
when viewed as a set of logical extensions to the
normal-linear model, is mostly rather simple. Its prac-
tical implementation met with few obstacles in a hard-
ware/software environment that is widely available
to other researchers. The technique provides accurate
estimates of spatial model parameters and appears
to be extremely robust, working well in a limited-
information environment (only 10 observations).
The success of the technique in the experimental set-
tings raises considerable scope for its application in
empirical work. Finally, in response to a relevant query
by the Editor, it is worth pointing out that the tech-
niques developed in the section are readily extendible
to cases where the binary decision is undertaken on
an array of possible alternatives. This situation—
the case of multinomial choice—is easily handled
by simulating instead of independentzi variates for
each binary choice, a vectorzi , of truncated normal
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deviates of dimension equal to the number of options
confronting the decision-makers. Hence, a potentially
richer class of investigative models is available from
a trivial extension of the basic algorithm.

4. Empirical application

Application of the SAR probit model,Eq. (14) to
neighbourhood effects in high-yielding variety (HYV)
rice adoption evolves from previous work byCase
(1992). Readers are referred to that source for further
details and motivation. Briefly, a farmer’s expected
profit from adopting an HYV plant, in place of a local
variety (LV) depends upon a set of price variables (in-
put and output prices), a set of fixed factors (say, farm
assets, land holding), a set of socio-economic charac-
teristics (for example, education, wealth), and neigh-
bourhood influences (expected profits to neighbours
from adoption). The first three sets of characteristics
are, of course, standard fare in adoption models. They
are accounted for by the matrixx(N×K) in Eq. (14).
The fourth effect is, of course, modelled through the
combination of the spatial weight matrixw(N×N) and
the spatial correlation parameterρ. In Case’s appli-
cation to sickle-harvester adoption in Java, the term
‘neighbours’ refers to all other farmers in the same
district. All neighbours are weighted equally, and the
neighbourhood effects for each farmer are normalised
to 1. In other words, the row restriction

∑
jwij= 1

is imposed column wise on the rows. In the termi-
nology ofAnselin (2002), this specification is a form
of hierarchical normal-linear model, where the ‘com-
mon higher-order level’ is a district. We apply similar
interpretations in this empirical application, with the
higher-order level represented by villages.

In the Bangladeshi context, rice is the staple for the
vast majority of the population, and the predominantly
agrarian economy revolves around the production of
rice in three seasons (Eunus, 2001). Food security con-
tinues to be a predominant concern, with the popula-
tion expanding by 2.2 million a year. The Bangladesh
Rice Research Institute has released dozens of vari-
eties of HYVs over the years, and these modern va-
rieties are known to enable substantially better yields
than local varieties. In spite of such varietal develop-
ment and progress in irrigation provision, Bangladesh
has one of the lowest HYV adoption rates in Asia

(Azam, 1996). The adoption issue is thus a critical one
for Bangladesh.

A literature does exist on HYV adoption in
Bangladesh, mostly employing OLS or probit regres-
sions of adoption on variables such as farm size and
farmer education (see, for example,Kashem, 1987;
Hossain, 1989; Ahmed and Hossain, 1990; Alauddin
and Tisdell, 1991). However, as in the broader tech-
nology adoption literature, these Bangladeshi studies
have not considered the role played by the adoption
attitudes of ‘neighbours’ in influencing the adoption
decisions of individual farmers. AsCase (1992)has
argued, ignoring neighbourhood influences not only
biases the estimated parameters in standard adoption
models, but also sacrifices important policy-relevant
information. For example, a key principle in rural
extension activity in many developing countries is to
disseminate information to a critical mass of farm-
ers such that positive externalities in the form of
‘secondary’ or ‘copy’ adoption in the locality carry
forward the momentum generated by the initial in-
vestment. The size of this externality constitutes im-
portant data for policymakers operating under limited
budgets and wishing to maximise returns to extension
investment.

There is some a priori evidence that a village-level
synergy exists in technology adoption in Bangladesh.
One example of this is the experience of INTERFISH,
a large agriculture/aquaculture extension project de-
signed to promote the spread of rice–fish cropping
systems in rural Bangladesh. An external team re-
viewing the achievements of the project found that
‘copy farmers’ (secondary adopters) abounded in the
areas where the project was based (Best et al., 1998).
These secondary adopters were seen to commit in-
creasing amounts of land to the new technology fol-
lowing positive adoption decisions by neighbouring
farmers. The review team estimated that the spatial
reach via secondary adoption could be a radius of 2 to
3 km and on this basis, suggested that future project
activities should allow sufficient space between
sites in order to maximise returns to the project’s
investment.

Our empirical application applies the spatial lag
model to cross-sectional, primary data for theAman
(monsoon rice) crop of 1996 in Bangladesh. The data
were collected in an intensive farm-survey coordinated
by one of the authors. Multistage random sampling
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Table 2
Summary statistics by adoption status

Variable Non-adopters
mean

Non-adopters standard
development

Adopters
mean

Adopters standard
development

NGO 0.26 0.44 0.22 0.42
Asset 4620 10,058 4762 14,285
Education 5.29 4.58 3.26 4.26
Experience 23.13 13.84 25.87 15.23
Family size 6.28 2.54 5.84 2.43
Farm size 0.67 0.69 0.65 0.55
Rented land 0.09 0.18 0.19 0.29
Market 3.77 2.56 2.78 1.49
Rice mill 6.42 4.97 8.74 5.29
Extension 10.08 5.47 12.94 5.04

Source: survey of Bangladeshi respondents, by S. Rahman, 1995.

techniques were used in selecting study locations as
well as the sample respondents. In our application it is
assumed that the attitude towards HYV adoption for
farmer i depends not only on its own internal char-
acteristics, but also on the influence of other farmers
in the village. The effects of farmers in surrounding
villages is, thus, assumed to be negligible.

The survey, conducted in 1996, had strict constraints
on budgets and personnel, and unfortunately, was not
designed with spatial estimation in mind. Thus, sur-
veys were carried out in clusters of villages in each of
the three districts. The three clusters had 6–8 villages,
respectively, making 21 villages in total in our sam-
ple. The districts (clusters) themselves are hundreds
of kilometres apart from each other, and therefore can
safely be considered not to be in each other’s neigh-
bourhoods.Within each cluster, individual villages are
between 2.5 and 8 km apart. While these are not ap-
parently great distances, our experience of Bangladesh
enables us to be reasonably comfortable with the
assumption that none of the villages are within the
other’s ‘neighbourhood’ (interactions terms between
villages in thew matrix are zero). Agrarian activities
in Bangladesh are known to be intricately linked with
the socio-economic dynamics of individual villages
(Herbon, 1994). At the same time, villages are typi-
cally located around small waterbodies, and the agri-
culture is strongly adapted to the local micro-relief. It
is therefore not surprising to find very different mixes
of crops and modes of production in areas just a few
miles away from each other. In light of these facts,
and given the geographical makeup of our data, we
have adopted the ‘village’ definition of ‘neighbours’.

The survey collected information on varietal choice;
input and output prices; levels of fixed factors; and
socio-economic characteristics of the farm families.
A total of 406 observations on local varietal use (76
observations) and modern varieties (330 observations)
constitute the sample. The variables included in the
model are the following:

• District: dummy variable representing the district
in which the farm is located;

• NGO: dummy variable indicating whether the
household received assistance from NGOs;

• Assets: value of farm assets in thousands of Taka;
• Education: number of years of schooling for house-

hold head;
• Experience: years of farming experience for house-

hold head;
• Household size: number of people in household;
• Farm size: total size of holding in hectares;
• Rented hectares: hectares of land rented in hectares;
• Market: distance from the nearest market (‘growth

centre’), in km;
• Rice mill: distance from the nearest rice mill;
• Extension: distance from the nearest Department of

Agriculture Extension office.

Table 2presents summary statistics by adoption status.

5. Results

Estimation results both with and without neigh-
bourhood influences are presented inTable 3. Con-
fidence intervals (highest-posterior density intervals)
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Table 3
Equation estimates and marginal effects (95% confidence interval in brackets)

Variable Spatial probit
coefficient

Non-spatial probit
coefficient

Spatial probit marginal
effects

Non-spatial probit
marginal effects

ρ 0.54 (0.41, 0.67)
District 1 0.01 (−0.70, 0.71) 0.22 (−0.50, 0.99) 0.00 (−0.25, 0.24) 0.06 (−0.14, 0.27)
District 2 0.29 (−0.84, 1.46) 0.36 (−1.12, 1.90) 0.10 (−0.29, 0.51) 0.11 (−0.35, 0.58)
District 3 −0.35 (−1.85, 1.17) 0.94 (−2.88, 0.91) −0.12 (−0.64, 0.42) −0.28 (−0.93, 0.30)
NGO −0.20 (−0.47, 0.04) −0.24 (−0.52, 0.02) −0.07 (−0.16, 0.02) −0.07 (−0.16, 0.01)
Asset 0.03 (−0.01, 0.08) 0.03 (−0.02, 0.08) 0.01 (−0.00, 0.03) 0.01 (−0.01, 0.02)
Education −0.15 (−0.28, 0.02) −0.16 (−0.29, 0.03) −0.05 (−0.10,−0.01) −0.05 (−0.09,−0.01)
Experience −0.12 (−0.36, 0.10) −0.12 (−0.35, 0.10) −0.04 (−0.12, 0.04) −0.04 (−0.10, 0.02)
Family size 0.32 (−0.02, 0.66) 0.25 (−0.08, 0.58) 0.11 (−0.01, 0.23) 0.08 (−0.02, 0.18)
Farm size −0.21 (−0.38,−0.03) −0.18 (−0.35,−0.01) −0.07 (−0.13,−0.01) −0.06 (−0.11,−0.00)
Rented land 0.17 (0.08, 0.26) 0.17 (0.08, 0.26) 0.06 (0.03, 0.09) 0.05 (0.03, 0.08)
Market −0.17 (−0.52, 0.19) −0.43 (−0.86,−0.02) −0.06 (−0.18, 0.06) −0.12 (−0.27, 0.00)
Rice mill −0.19 (−0.55, 0.20) −0.27 (−0.78, 0.29) −0.07 (−0.19, 0.07) −0.08 (−0.24, 0.07)
Extension 0.50 (−0.36, 1.40) 1.21 (0.13, 2.36) 0.17 (−0.13, 0.47) 0.36 (0.03, 0.71)

Adoption percent (non-adopters) 70% 77%
Adoption percent (non-adopters) 88% 75%

Note: 95% hpd regions (confidence intervals) are presented in parentheses (intervals with boundaries of different sign are not significant
at the 5% significance level).

at the 95% level are reported in parentheses. The
convention followed in sampling theory of presenting
t-statistics associated with regression parameters is
not followed here for two reasons. First, because the
simulated distributions are themselves approxima-
tions tot-distributions, the result that normalisation by
standard errors brings the estimate into at-distribution
no longer holds. Second, the highest posterior density
regions are the conventional statistics in Bayesian
applications. Because thequalitative effects (signs of
coefficients) of most of the covariates remain the same
between the two models, it is worth contemplating
the interpretation of the qualitative effects before dis-
cussing differences in coefficient magnitudes between
models.

Of the human capital variables (education, experi-
ence), only education is significant. While the nega-
tive and significant estimate for education may appear
counterintuitive, it is consistent with the findings of a
previous study based on a simple probit estimate from
earlier data.Rosenzweig (1982)postulates that edu-
cation can affect new technology adoption in different
ways. On the one hand, it can encourage adoption by
lowering learning costs. On the other, it may discour-
age adoption since education provides more profitable
off-farm employment opportunities, and new tech-

nologies may reduce the ability of farm operators to
substitute their time inputs away from cultivation. Al-
though education has been found to positively affect
HYV adoption in other rice economies such as In-
donesia (Pitt and Sumodiningrat, 1991), we are able
to strengthen the evidence for the opposite trend in
the case of Bangladesh.

NGO contact and asset values of the farm have
insignificant coefficients. Family size is insignificant
too; however, it becomes significant at the 10% level
(not reported here). With the exception of planting
and harvesting periods in which all family members
contribute to operations, routine labouring is under-
taken by adult males. But in the planting and har-
vesting periods, there is an acute shortage of labour
(Metzel and Ateng, 1993), and every spare hand,
including children, is pressed into farm work. This
phenomenon is even more acute in HYV cultivation,
where crop management is generally more labour
intensive. In this regard, a larger family size is more
conducive to HYV adoption, and this observation is
reflected inTable 3estimates. A consumption-based
explanation for this phenomenon has also been ad-
vanced for the case of Bangladesh.Hossain (1989)
finds a similar result and interprets it as a confir-
mation of the Chayanovian hypothesis that higher
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subsistence pressure leads to greater adoption of new
technology.

Farm size and rented hectares both have significant
coefficients. Smaller farms appear to have a greater
propensity for HYV adoption. Once again, a ‘subsis-
tence pressure’ argument fits well with this finding.
Land rental imposes an additional payment burden in
cash or crop-share, which may provide an incentive
for the adoption of higher surplus yielding varieties. It
is possible in some settings that adoption encourages
land rental instead of vice versa, because the surplus
generated by HYV adoption may prompt farm expan-
sion by rental. In the Bangladeshi context, however,
it has been our observation that renting is common
for marginal, entrant farmers as well as larger, more
commercial farms. Indeed, land is so coveted and in
such short supply that renting is often the only way
in which landless labourers can become cultivators
themselves.

Turning to the variables measuring infrastructural
underdevelopment (distances to markets, rice mills
and extension offices) we find that their coefficients are
all insignificant. Although the sign on the coefficient

Fig. 10. Empirical evidence on the neighbourhood effect. Empirical distribution forρ (the ‘neighbourhood’ effect) as estimated from the
SARP model (Eq. (8)) using the Bangladeshi data.

for distance from extension is counterintuitive in ad-
dition to being insignificant, coefficients for distances
from markets have the expected sign. With distances
from markets and rice mills increasing, one would ex-
pect incentives for HYV adoption to be depressed. The
insignificance of coefficients for these variables pos-
sibly indicates that the underlying variables are not
well measured. In capturing the effects of extension
activity on adoption, for instance, one would ideally
like to have actual measures of extension contact, such
as numbers of visits from extension agents. Unfor-
tunately, these data are unavailable. Also, we do not
have data on one key variable, soil/land quality, which
could potentially cause spatial correlations. However,
a recent study byBarr (2000)in Bangladesh has found
that soil properties do not seem to affect cropping de-
cisions by farmers.

Two measures of primary importance in the study
are thesigns and magnitudes of the neighbourhood
correlation coefficient,ρ. The posterior means esti-
mate of this parameter is 0.54, and the confidence
interval presented inTable 1 suggests that the es-
timate is significantly different from zero.Fig. 10
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presents the complete distribution of draws from the
Gibbs sample. This distribution, recall, is derived
from a random walk Metropolis step. The distribu-
tion is uni-modal and appears to be almost symmet-
ric. Its key feature is its location. Very little of the
density resides in the negative part of the real line.
Hence, with few caveats, there exists a strong, pos-
itive neighbourhood effect among the Bangladeshi
respondents.

With significant local synergies in adoption con-
firmed, the question arises about the extent to which ig-
noring these influences biases policy conclusions. The
marginal probabilities reported inTable 3do not seem
to vary greatly between the spatial and non-spatial
models for most variables. For example, the presence
of one additional family member increases the prob-
ability of adoption by 8% according to the traditional
model. In contrast, inclusion of neighbourhood effects
results in a marginal probability of 11%. However,
the difference in predictions is seen to be substantial
for a few variables. For instance, both models predict

Fig. 11. The implications of ignoring the neighbourhood effect in the Bangladeshi data. The figure presents 95% highest-posterior density
regions for estimates of the farm size (0.10 ha) at which adoption status changes using results from the non-spatial probit model (dashed
lines—top and third to top) and the spatial probit model (solid lines—second to top and lower lines). The hectare estimates are generally
larger and are more widely varied when the spatial effect is ignored.

increased distances from markets to depress adoption
probabilities. But the non-spatial model overstates
this effect very significantly, predicting that ceteris
paribus every additional kilometre from the mar-
ket reduces adoption probability by 12%, while the
spatial model estimates the same effect to be only
6%.

Finally, we consider the implications of ignoring the
neighbourhood effects in one situation that has sig-
nificant relevance in the Bangledeshi context. This is
the notion of some form of optimal size in the struc-
ture of farm units. From the estimates for the probit
and spatial probit models we note that there is a sig-
nificantly negative response to farm size. The larger
the farm the less inclined an operator is to adopt
HYV inputs. But, in policy discussions concerning
this potentially important effect it is natural to ask
the size of farm at which adoption status changes. In
other words, we seek the size of the farm operation at
which a non-adopter decides to adopt and the size at
which an adopter decides to reject the HYV input. This
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quantity will vary among respondents and may be use-
ful for planning purposes and land-use strategies and
it is desirable to have an estimate of this quantity in
policy discussions.

Our sample is quite ‘unbalanced’. About 80% of
the sample consists of adopters. This imbalance makes
policy prediction more difficult. Nevertheless, as we
change farm size, we can imagine a spectrum of ‘reser-
vation values’ (specified in terms of hectares of land
holding) at which each respondent changes adoption
status. These reservation values are estimable for each
farmer through the insertion of one additional step in
the Gibbs algorithm. This step is to find the level of
the covariate in question for which the dependent vari-
able in the regression model is exactly zero or, in other
words, the level̂xi defined by

x̂i = −x−jβ−j
βj

(16)

Here,x−j denotes the covariate matrix with the col-
umn corresponding to the land variable (columnj)
excluded,β−j denotes the corresponding coefficient
vector, andβj denotes the coefficient of the land
variable in the original regression. Due to the ap-
pearance of the latter coefficient in the denominator,
the left-hand side of (16) does not have a form that
enablesdirect simulation. But, once again, using the
Gibbs sequence we are able to generate a sample of
draws for x̂i and in so doing, characterise its loca-
tion and scale. Although the estimates themselves
may be extremely important for policy purposes, in
the spirit of the methodological contributions of the
paper we are mostly interested in how these esti-
mates are affected by the exclusion of neighbourhood
effects.

Fig. 11 presents two sets of estimates of 95%
highest-posterior density zones for the quantities in
(16) from the standard probit model (dotted lines)
and the spatial probit model (solid lines). The two
distributions are dissimilar with the estimates ob-
tained from the SARP model considerably more pre-
cise. The importance of allowing for neighbourhood
impacts appears, thus, to play an important role in
the Bangladeshi data and to reiterate the cautionary
remarks offered byCase (1992), their exclusion sig-
nificantly biases empirical results and thus, the policy
conclusions that evolve from them. A strong, positive
neighbourhood effect is present in the data and we

must take care to account for it in devising policy
prescriptions.

6. Conclusions

MCMC methods have completely revolutionised
Bayesian inference. Problems that were not man-
ageable just a decade ago have become routine and
with them, the Bayesian paradigm is making inroads
into many fields of empirical research. In this paper,
we provide a stepping-stone primer to Bayesian spa-
tial probit estimation and demonstrate its importance
in policy formation. Policy conclusions are affected
by the propensity of adoption decisions by neigh-
bours to affect others and we find a strong, positive
neighbourhood effect in the Bangladeshi data. This
conclusion is obtained robustly through a simple
extension of a basic algorithm used to estimate the
normal-linear model. The algorithm is implemented
with hardware and software that is widely available
to other researchers and generates precise estimates
of policy parameters, efficiently, robustly and with
few computational demands.

Finally, in the interests of broadening exposure to
alternative arrays of techniques, a very useful col-
lection of material on Bayesian spatial estimation is
found at (Jim LeSage’s website)http://www.spatial-
econometrics.com. At the least, the step-by-step in-
troduction that we present in the current contribution
increases the accessibility of this fundamental re-
source for tools in spatial inference. If adopted by our
neighbours, the class of techniques available there are
likely to stimulate additional advances in the growing
field of applied spatial inference.
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