Chapter 5  Multi-scale analysis and stochastic downloading of satellite image


Chapter 5

Multi-scale analysis and stochastic downscaling of satellite image

Abstract

In this paper, a method based on a discrete wavelet analysis is introduced to determine the multifractal measures of an image and to investigate its multiscale properties. An algorithm based on discrete Haar wavelet analysis and multifractal modeling is designed to stochastically simulate a high resolution image from a low resolution image. More importantly, the histograms of the wavelet coefficients are approximated consistently and accurately by Levy-stable probability density functions. These distributions have a central role in mathematical statistics similar to that of the Gaussian distribution, but have a slowly decaying tails and infinite moments. Therefore, the Levy distribution is an appropriate candidate to reproduce the observed behavior of the wavelet coefficients. The parameters of Levy distribution can be obtained from a universal multi-fractal measure. In this algorithm, the Haar wavelet coefficients are treated as symmetry Levy random variables with (, C1 and H estimated from universal multifractal measures of the Haar wavelet coefficients. Once (, C1 and H are estimated, a coarse resolution image can be stochastically downscaled to one of higher resolutions. The results show the algorithm’s good performance when comparing the simulated images to real images. Because the universal multi-fractal model has an increased ability to simulate the data extremes, the algorithm unavoidably generates some noise in the simulated image. An adaptive box filter is incorporated into the downscaling algorithm to further improve the performance of the algorithm. Importantly, the simulated image generated by this algorithm preserves the macro-structure information and statistics of original low resolution image.

5.1 Introduction

One of the goals for scale dependence studies in remote sensing is to use low spatial resolution data to monitor and model important terrestrial processes. Actually, the low resolution global scale data obtained from satellite represents the only feasible way to monitor and model many important global change processes (Running et al., 1994, Friedl, 1997). In the last thirty years, many modeling approaches for scaling have been developed to estimate the land surface variables from a low resolution remotely sensed data. Before these approaches can be used with confidence, further investigations of the interactions among sub-pixel heterogeneity, remote sensing data inversion modeling, and biophysical models, are required (Friedl, 1997). Recently, a framework for the systematic exploration of such scaling problem related to multifractal has been developed (Dubayah et al., 1997). It has been shown that multifractals possess substantial non-linear spatial variability and is a characteristic of cascading processes. Peknold et al. (1997) wrote “In such a process, the field flux is the result of cascading down of large scale fluxes to successively smaller and smaller scales. Cascade processes can produce fields which exhibit ‘multi-scaling’ or ‘multi-fractal’ behavior, characterized by spatial or temporal scaling exponents which are non-linear with respect to the order of statistical moment.” The most important point is that the multifractal provides new approaches in downscaling environmental fields to finer resolution with observed small-scale variability. The development of the multifractal theory and accompanying data analysis methods suggests that new approaches for the systematic analysis of the multi-scale variability of environmental fields are particularly well suited to the issue of scaling within remote sensing. It is this multiscaling perspective that is the focus of this research. 

A multifractal framework allows for spatially heterogeneous processes to operate and produce spatially heterogeneous fields characterized by scaling exponents that are non-linear with respect to the order of statistical moment (Dubayah, et al., 1997; Lavallee et al., 1993). Most environmental fields do not show scaling of the moments, however the increments or fluctuations do. In this study, the wavelet coefficients of a remotely sensed imagery are used in place of the image itself to investigate multiscale properties of the imagery.

The goal of this paper is to describe how Haar wavelet coefficients are used to measure multifractal/multiscale properties of satellite images and to develop a stochastic downscaling algorithm based on a wavelet-multifractal model.

The wavelet transform has been developed for signal analysis, and applied to signal processing, data compression and pattern recognition (Xia, 1997; Ranchin, et al., 1993). The wavelet transform can be thought as a sequence of filtering processes, which examines structures at different resolutions (scales), independently of each other. In this sense, the signal, or image under study, is expressed by an orthogonal or complete set of basis functions, the latter being orthogonal to each other at different resolutions (scales). The building blocks of this multi-scale representation are a self-similar basis set of functions (Kantelhardt, et al., 1995). The wavelet basis function is constructed from discrete translations and dilations of a signal mother wavelet function. Because of its orthogonal properties, wavelets are functions displaying like a wave fluctuating around zero.

Wavelets promise to be very appealing to characterize the self-similarity of the fractal geometry. The fractal geometry is a way to describe the scale and “texture” of a surface (Lindsay, et al., 1996). If a signal or an image is similar to itself at different scales, then the wavelet coefficients also will be similar at different scales. If the coefficients are large, the similarity is strong, otherwise the self-similarity is minimal (Misiti and Misiti, 1995). Mallat (1989) has shown that the detail signals of wavelet decompositions for a fractal Brownian motion (fBm) signal were similar at all resolution. 

The simplest discrete wavelet, the Haar wavelet, is introduced to study conventional multifractal scaling properties. For this purpose, a Haar-wavelet partition function is used which is analogous to the well-known partition function used in the standard multifractal analysis. In the wavelet analysis, the scaling behavior between different box probabilities at different scales is investigated. The methods described in this study provide a convenient tool in which one can investigate the multifractal measures of a satellite image at different resolutions separately. The procedure looks like a mathematical microscope, which is able to zoom in or out on various structures (Kantelhardt, et al., 1995).

Based on the investigation of multi-scaling properties, I designed a stochastic downscaling method which is similar as the method proposed by Perica and Foufoula-Georgiou (1996a,b). Their method is based on the use of mono-fractals to simulate geophysical fields.  In their study, they test the hypotheses that the distributions of normalized rainfall fluctuations over a wide range of scales are well described by a Gaussian distribution. An advantage of monofractal is that the construction procedure is relatively simple but due to the fact that satellite images are spatial heterogeneity and non-isotropic, mono-fractals and the Gaussian distribution are not appropriate. In this study, a symmetrical Levy distribution is chosen instead of a Gaussian distribution and multifractal is used in the simulation process. 

In the next section, I briefly describe the mathematical concepts of the scaling and multi-fractal concepts and then I explain the relationship of the wavelet coefficient and the multi-fractal measures. In the next section, I present the multi-fractal properties of a SPOT-4/VEGETATION image by using the Haar wavelets, and also introduce the procedures for estimating the multi-fractal properties for the image. Finally, a stochastic downscaling algorithm based the wavelet-multifractal model is designed to simulate higher resolution images from low resolution images.

5.2 Scaling and multifractal
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This section briefly reviews the multi-fractal analysis by using a box-counting method. Assume that a probability distribution function ((x) is defined at each point x in an n-dimensional lattice with unit distance. If the lattice is divided into non-overlapping boxes with length ( ((1), then the total probability contained within a box at x’ is written as

Mathematically the box-probabilities p((x) can be obtained by convolution:
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where b((x) is defined as: b((x) =1 when 0 <= x <l, otherwise b( (x) =0. 

In mathematics, the ensemble average of the box-probabilities <p((x)> is related to the scaling exponents ( (>0), called the singularity exponents by <p((x)> ~ ((, when ( ( 1. If <| p((x)| q> ~ (k(q) exists, where q is the order moment and K(q) a non-linear scaling function associated with the moments, the measure is called multifractal (Dubayah, et al., 1997; Lavallee et al., 1993). 

In remote sensing, an image is usually a mixture of land cover classes such as forest, crop, water, and urban areas occurring within a grid. This grid spacing is called the scale or resolution. Starting from the coarsest resolution (λ=1) for only single value, the resolution is increased by 4, 16, 64 values, and so on, scaling-down to the finest resolution.  The resolution increases as λ decreases (λ= 1/1, 1/2, 1/4, 1/8). The process can be defined as spatially multi-scaling if the following equation exists (Dubayah et al., 1997):

<Pλ(x)q > ( λk(q)< P1(x)q >                  (5.3)

Here λ ( 1. Sometimes, λ-1 is used as scale factor. In this case, the largest scale factor corresponds to the finest resolution (Dubayah et al., 1997). In this paper, λ is used as scale factor. In fact, the actual resolution of λ = 1 depends on the aggregation levels of an image (Dubayah, et al., 1997). For example, one performs three level aggregation of an image with size 256 x 256, λ = 1 could refer to an aggregation of 8 x 8 grid cells in this image, and thus λ = ½ would correspond to an aggregation of 4 x 4, and so on. 

Actually, if K(q) is linearly related to the order of moment q, the process is said to be “fractal” or “monofractal” (Pecknold, et al., 1997; Tessier, et al., 1993). The moments of a remotely sensed image can then be related to this single value as a function of scale. For multifractal (multi-scaling) the K(q) is non-linearly related to q (Dubayah et al., 1997).

Equation 5.3 also tells us that one can obtain statistical properties of an image at one resolution from another resolution once the K(q) is known. It means that a remotely sensed image with a given scale factor λ whose moments are calculated, the moments at another scale factor λ2 can be obtained by using Equation 5.3 (Dubayah, et al., 1997). Therefore, an incentive for the multiscale characteristics of environmental fields is that it allows one to build a downscale model which is able to reproduce the observed statistical characteristics of the field as embodied in the exponent, K(q). 
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Since most environmental fields do not show scaling of the moments; however their increments or fluctuations |pλ(x) - pλ(x+ λ)| do. Therefore the multifractal analysis is often carried out on the fluctuations of the observed field, and not the field itself (Harris, et al., 2000; Kantelhardt et al., 1995). One can study the behavior of the new function for one dimension:

In this continuous case, one may expect that the differences |p((x) – p((x+()| will possess also multifractal properties, and the exponents K(q) become a non-linear function of q. The same result has been found in the discrete wavelet case for hierarchical cascade processes (Kantelhardt et al., 1995). 

5.3 Wavelets and multifractal
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From Chapter 2, we know wavelet transform includes several stages referred as averaging and differencing. Actually, the averaging and differencing process is a way of computing wavelet transform based on the smoothing function ((,u(t) for “averaging” and the wavelet function ((,u(t) for “differencing”, which can be obtained by dilation and translation of a single function ( (t) and ( (t), respectively. For continuous wavelet transform, the smoothing function ((,u(t) and the wavelet function ((,u(t) as: 

Where ( is a scale and u is a location parameter. 

Unlike a Fourier transform, which has only a single set of basis functions (sine and cosine functions), wavelet transform has an infinite set of possible basis functions. The scaling and wavelet functions of Haar wavelet are:
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The averaging of image X(t) at scale ( and location u is given as:
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and the differencing of X(t) are generated by another integral transform of X(t) with the wavelet function ( (t); that is,

X’((u) is called the wavelet transform of X(t) at scale ( and location u. It is also called here the “local fluctuation” or “detail” process, compared to the process X((u), which is called the “local average” process at scale ( and location u (Perica and Foufoula-Georgiou , 1996a,b).

The discrete wavelet transform is thought of as an implementation of the continuous wavelet transform on a sampled process X(t). Usually for convenience, the values for ( and u is defined as dyadic: (=2-m and u=n2-m, where the parameter m corresponds to scale (=2-m and the parameter n corresponds to location (Grapps, 1995). Thus the discrete wavelet can be written as

(m,n(t) = 2m((2mt – n)          (5.9)

And the corresponding scaling function as 

(m,n(t) = 2m((2mt – n)          (5.10)

The discrete local average value at scale m and location n is then given as

Xm(n) = {<X, (m,n>}n(Z        (5.11)

And the discrete wavelet coefficient at the same scale and location as

X’m(n) = {<X, (m,n>}n(Z      (5.12)
Where <f,g> denotes the inner product  f(t) and g(t).

The theory of two-dimensional wavelet transform is a straightforward extension of the one-dimensional transform. The two-dimensional wavelet transform is based on a separable multi-resolution approximation (Mallat, 1989; Daubechies, 1992). In this case, the two-dimensional scale function is written as ((x,y) = ((x) ((y) and the three wavelet functions are (1(x,y)) = ((x)((y)), (2(x,y) = ((x)((y) and (3(x,y) = ((x)((y). One can define the discrete scaling function as,

(m,,n,k(x,y) = 22m((2mx – n, 2my – k)      (5.13)
And similar equations can be defined for the discrete wavelet functions (1m,n,k(x,y), (2m,n,k(x,y) and (3m,n,k(x,y). Just as the one-dimensional case, the two-dimensional discrete local average value at scale m and location (n,k) is given as

Xm(n,k) = {<X, (m,n,k>}(n,k)(Z2      (5.14)
The three wavelet coefficients at the same scale and location as

X’m,1(n,k) = {<X, (1m,n,k>}(n,k)(Z2      (5.15)
X’m,2(n,k) = {<X, (2m,n,k>}(n,k)(Z2      (5.16)
X’m,3(n,k) = {<X, (3m,n,k>}(n,k)(Z2      (5.17)
These three wavelet coefficients are fluctuating around zero and provide the local fluctuation information at the horizontal, vertical, and diagonal directions. The larger absolute transform values in these detail images correspond to sharper brightness changes and thus to the salient features in the image such as edges, lines, and region boundaries (Manjunath and Mitra, 1995). Sometimes the two-dimensional wavelet decomposition use two-dimensional filters. For example, in the Haar wavelet 
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f1 is used to generate approximation image, f2 is for vertical direction, f3 is for horizontal direction and f4 is for diagonal direction.
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Actually, the multifractal definition Eq. 5.3 is closely related to the Haar wavelet analysis of the probability distribution function ((x) (Kantelhardt et. al. 1995). The convolution of ((x) with ((,((t) yields
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Actually, the differences are just the coefficients of the Haar-wavelet decomposition of ((x), 

Where {t’}={0, 2(, 4(, …}.
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For two-dimension case, three Haar wavelets Dqi(() at horizontal, vertical, and diagonal directions will be generated, which can defined as:

Where x = 0, 2(, 4(, …, y = 0, 2(, 4(, …. One may expect Dqi(() ~ (ki(q) (( ( 1) exist. 

The wavelets provide an alternative tool to study the behavior of multifractal. Therefore the moment-scale analysis of wavelet coefficients can be used to investigate the multi-fractal properties of an image. Since satellite images are generally non-isotropic, one needs to study the three multifractal measures at each of the three different directions.

5.4 Multi-scaling (multi-fractal) analysis on a SPOT-4/VEGETATION image

In this study, the SPOT-4 multi-spectral data from the grassland area, in the Oklahoma, USA is used in the wavelet scale analysis. This SPOT-4 satellite system provides measurements, which are well adapted to biosphere studies. Opportunities for scale integration are provided by the combination of the main SPOT instruments (HRVIR-20m, Figure 5.1a shows band 2), having high spatial resolution for detailed modeling activities and at the same time is registered spatially and spectrally with the 1km resolution VEGETATION scanner. Figure 5.1b shows the band 2 VEGETATION image (image size is 128 by 128, resolution 1000m).  The VEGETATION optical instrument operates in four spectral bands: blue, mainly to perform atmospheric corrections, red and near infrared (NIR), sensitive to the vegetation’s photosynthetic activity and cell structure, and short wave infrared (SWIR), sensitive to soil and vegetation moisture content (SPOT Image Inc., 2002).

I perform the multifractal analysis on the grassland SPOT-4/VEGETATION image as follows. First, a Haar wavelet transform is applied to the image to obtain six level decompositions including ‘local average’ smoothing image and 3 wavelet coefficients. Figure 5.2a shows the Haar wavelet decomposition of the SPOT-4/VEGETATION image. Because of the orthogonal properties of wavelet basis functions, the smoothing image and the three wavelet coefficient images for the same scale are uncorrelated. In order to conserve the mean of the field at varying scales, the normalized wavelet coefficients will replace the standard wavelet coefficients (fluctuation) in the moment scale analysis of VEGETATION image. Next, the statistical moments for different orders (q= 0.2, 0.5, 0.8, 1, 2, 3, 4) of three the wavelet coefficients at each scale were calculated. Table 5.1, 5.2, and 5.3 shows the statistical moments at each scale for the horizontal, vertical and diagonal normalized wavelet coefficients respectively. The value of statistical moment is plotted against the resolution on a logarithmic scale. Figure 5.3, 5.4, and 5.5 show the plots of moment vs. resolution for the horizontal, vertical and diagonal normalized wavelet coefficients. According to Eq. 5.3, the slopes of these log-log lines of the statistical moment vs. resolution are computed to obtain the scaling exponent K(q) using least-squares regression (Dubaybh et al., 1997).  Finally, K(q) is plotted as a function of q to help uncover the multiscale (multifractal) signals in the image. Plots of K(q) as a function q are shown in Figure 5.6. Figure 5.6 indicates that the SPOT-4/VEGETATION image is not isotropic; therefore, the three different directions are presented for each of the different multifractal properties. 

Table 5.1 Moments for horizontal direction

	Scale 
	q=0.2
	q=0.5
	Q=0.8
	q=2.0
	q=3.0
	q=4.0

	( =1 (64000m)
	0.913931
	0.923116
	0.960789
	1.506818
	2.94468
	6.820958

	( =1/2 (32000m)
	0.951229
	0.941765
	0.960789
	1.476981
	2.773195
	6.110447

	( =1/4 (16000m)
	0.960789
	0.941765
	0.960789
	1.433329
	2.58571
	5.419481

	( =1/8 (8000m)
	0.970446
	0.951229
	0.970446
	1.32313
	2.054433
	3.490343

	( =1/16 (4000m)
	0.970446
	0.951229
	0.970446
	1.284025
	1.896481
	2.974274

	( =1/32 (2000m)
	0.980199
	0.970446
	0.980199
	1.20925
	1.584074
	2.203396


Table 5.2 Moments for vertical direction
	Scale
	q=0.2
	q=0.5
	q=0.8
	q=2.0
	q=3.0
	q=4.0

	( =1 (64000m)
	0.923116
	0.923116
	0.960789
	1.491825
	2.829217
	6.233887

	( =1/2 (32000m)
	0.951229
	0.941765
	0.960789
	1.476981
	2.773195
	5.989452

	( =1/4 (16000m)
	0.960789
	0.941765
	0.960789
	1.447735
	2.637944
	5.584528

	( =1/8 (8000m)
	0.960789
	0.941765
	0.970446
	1.419068
	2.50929
	5.002811

	( =1/16 (4000m)
	0.960789
	0.941765
	0.960789
	1.419068
	2.4109
	4.437096

	( =1/32 (2000m)
	0.960789
	0.941765
	0.960789
	1.419068
	2.386911
	4.437096


Table 5.3 Moments for diagonal direction
	Scale
	q=0.2
	q=0.5
	q=0.8
	q=2.0
	q=3.0
	q=4.0

	( =1 (64000m)
	0.878095
	0.913931
	0.960789
	1.419068
	2.534509
	5.419481

	( =1/2 (32000m)
	0.951229
	0.941765
	0.970446
	1.433329
	2.559981
	5.365556

	( =1/4 (16000m)
	0.960789
	0.941765
	0.970446
	1.419068
	2.484323
	5.002811

	( =1/8 (8000m)
	0.960789
	0.951229
	0.970446
	1.336427
	2.138276
	3.819044

	( =1/16 (4000m)
	0.970446
	0.951229
	0.970446
	1.309964
	2.013753
	3.353485

	( =1/32 (2000m)
	0.960789
	0.951229
	0.970446
	1.336427
	2.075081
	3.490343


These scaling exponent functions K(q) are somewhat difficult to handle, as they represent an infinite hierarchy of parameters (Pecknold et al., 1997). A method has been described to obtain the scaling characteristics with a small number of parameters. In this study, a multifractal measures introduced by Schertzer and Lovejoy (1987, 1991) are used to express the scaling function K(q) as follows:
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Where 0 < ( ( 2. C1 is the codimension of the mean of the field, which characterizes the sparseness of the mean value of the field; the Levy index ( characterizes the degree of multifractal. There is a third fundamental parameter, H, which is a measure of the degree of non-homogeneity of the field  (Pecknold et al., 1997). As ( ( 0, K(q) becomes linear and we obtain the mono-fractal. Hence we can determine all the statistical properties of a physical field using only the three parameters, (, C1 and H. ( and C1 are estimated by using a double trace moment technique (Lavallee, 1991). H can be obtained from the scaling of the power spectrum and the moment scaling function (Pecknold, 2000). Table 5.4 lists the three parameters, H, ( and C1 for the three directions: horizontal, vertical, and diagonal. From table 5.4, one can find that the diagonal direction has a much larger C1 and the vertical diagonal direction has a smaller C1. As described above, C1 characterizes the sparseness of the mean value of a field; therefore, a large C1 indicates that most of the field has fairly small spectral value with a possibility of a few large spikes. This provides a hint that the study area is less heterogeneous in the diagonal direction and more heterogeneous in the vertical direction. This is an identical result obtained from wavelet coefficients analysis. In fact, the wavelet coefficients are a measure of the intensity of the local variations of the image for that individual scale. 

Table 5.4 Multifractal parameters

	
	Horizontal
	Vertical
	Diagonal

	H
	0.71
	0.6
	0.23

	(
	1.42
	1.81
	1.7

	C1
	1.13
	0.82
	1.41


Table 5.5 Average of wavelet coefficients

	Resolution
	Horizontal
	Vertical
	Diagonal

	2000m
	5.04
	5.62
	4.64

	4000m
	6.24
	6.99
	5.47


Table 5.5 lists the mean values of the wavelet coefficients for the three directions at two resolutions: 2000m and 4000m. The diagonal direction has a smaller mean wavelet coefficient at both resolutions indicating lower variability, but the vertical direction with a greater mean wavelet coefficient shows the higher variability. As discussed in previous section, one can obtain statistical properties of an image at one resolution from another resolution when the K(q) is known. It means that a remotely sensed image with a given scale factor λ whose moments are calculated, the moments at another scale factor λ2 can be obtained by using Equation 5.3 (Dubayah, et al., 1997). Introducing realistic small-scale variability via downscaling might provide a necessary and cost-effective alternative for image simulation. 

5.5 Wavelet-multifractal stochastic downscaling model

5.5.1. Fractional Levy Motion (fLm)

Stochastic fractal, such as fractional Brownian motion (fBm), has been widely used to represent natural topography, mostly mountainous terrain (Tchiguirinskaia, et al., 2000). Monofractal models have been used for stochastic processes that have stationary independent increments. If one thinks a stochastic process as Levy noise, rather than Gaussian noise, the resulting monofractal field becomes a multifractal field with fractional Levy motion (fLm), which includes fBm as a special case (Tchiguirinskaia, et al., 2000). An advantage of monofractal is that the construction procedure is relatively simple. But due to the fact that satellite images are heterogeneous, this implies that the surface cover of a satellite image will have many sudden changes or jumps in its radiometric values. Therefore, a multifractal model may be an appropriate method to reproduce the statistical properties observed in the images rather than a monofractal model. 

The main difference of Levy noises compared to the Gaussian case is that they display a power-law fall-off of their empirical distribution function tail, with the exponent ( being the main parameter describing a Levy distribution (Tchiguirinskaia, et al., 2000). For the symmetric situation (Belfield, 1998),

f(x) = exp(ixd - |Cx|()       (5.23) 

Where ( is the Levy index, and C = C1(H is the scale parameter. H is related to mono-fractal measure (Painter et al., 1995). H = 1/( is the self-similarity parameter and corresponds to the case of independent increments. For 1/( < H < 1 positive increments tend to be followed by positive increments, whereas for 0 < H < 1/( positive increments tend to be followed by negative increments (Pecknold et al., 1997). The Levy distribution includes the Cauchy (( = 1) and Gaussian (( = 2) distributions (Painter et al., 1995).

The parameters of a Levy distribution can be obtained from an multifractal measures which constitutes a rather general framework for characterizing scale invariant behavior in many types of geophysical data sets (Pecknold et al., 1997). Compared to monofractal, the multifractal model has an increased ability to simulate the data extremes, i.e. very large or very small variations in an image surface, and thus to capture more of the scaling range of the experimental data sets (Lavallee et al., 1993). The multifractal model with moment function K(q) is presented in Eq. 5.22 (Schertzer et al., 1987, 1997).

5.5.2. Wavelet-multifractal stochastic downscaling model

The goal in stochastic simulation is to produce a realization of a scene with the same statistics and intensities as the low resolution scene. However, it should be emphasized that this simulation does not generate a facsimile of the scene analyzed (Pecknold et al. 1997) but generates the equally likely realizations of a scene (Csillag, 1996, 1997). For simulation purposes, the Haar wavelet coefficients are treated as symmetrical Levy random variables with (, C1 and H estimated from universal multi-fractal measures of the test scene. Once (, C1 and H are estimated, one can stochastically downscale a field from its coarse resolution to one of higher resolutions. 

A new algorithm for stochastic downscaling model similar to image fusion, which uses images of different resolutions, is proposed. Here the random distribution is chosen from a symmetrical Levy distribution instead of a Gaussian. Figure 5.7 shows the general procedure of the stochastic downscaling based on wavelet-multifractal model.

To be more specific, assume we have already had an image with a resolution of 1km and wish to perform the downscaling from 1000m down to 250m. First, the 1000m resolution image will be decomposed into six levels using Haar-wavelets from which we will obtain six level wavelet coefficients. Next, the three multi-scaling parameters (, C1 and H of three directions: horizontal, vertical, and diagonal will be estimated according to the method described in previous section. The downscaling simulation will begin at 2000m (( = 1) resolution. The algorithm proceeds as follows:

1. Three directional grids with 1000m resolution are generated and all cell values are set to 0;

2. Random numbers are selected from each of the three directional Levy distributions for each multi-fractal parameter. (, H and C = C1(H (( = ½ for 1000m, ( = ¼ for 500m, ( = 1/8 for 250m and so on) are added to each cell value of the three grids. These new cell values are treated as the three wavelet coefficients;

3. An inverse Haar wavelet transform is performed on the original 1000m resolution image and the three generated grids from step 2 to produce a new image at the 500m resolution. If a pixel value is less than 0, the pixel will be set 0;

4. Steps (1) to (3) are repeated with 500m resolution using ( = ¼ to generate a 250m resolution image.

5. Repeat steps (1) to (4) to generate higher resolution images using the appropriate multi-fractal values.

5.5.3 Results

The SPOT-4 VEGETATION image with 1000m resolution is used to test the algorithm for stochastic downscaling. The Levy index (, the codimension, and the scaling parameter H of three wavelet coefficients calculated in the previous section are directly utilized in the algorithm. For the simulation exercise, three different resolutions are chosen: 250m, 125m and 62.5m. For comparison, the observed SPOT-4 image with 20m resolution is resampled to 250m, 125, and 62.5m resolutions. Figure 5.8, 5.9, and 5.10 show the 250m, 125m and 62.5m simulated images and their corresponding observed images respectively. One can visually observe that both the simulated and resampled images match closely. There is a consistent agreement between the images' spatial patterns. However, as resolution increases, the ‘roughness’ of the simulated images is markedly increased as seen in Figures 5.7, 5.8, and 5.9. A few white points are sparsely distributed in the simulated images. These white points are probably noise, which are related to the extreme points generated by the Levy distribution. Table 5.6 shows the mean, standard deviation of the simulated images and resampled images at three resolutions. The mean of the image at the 1000m resolution is also 39.55. The results show that the downscaling preserves the mean. However, the standard deviation of the simulated image increases as the resolution increases. A possible reason is that more and more Levy noises are incorporated into the simulated images as the resolution increases.

Table 5.6 Mean and standard deviation of the simulated and resampled images

	
	250m 
	125m 
	62.5 

	mean
	simulated
	39.55
	39.55
	39.55

	
	resampled
	37.51
	37.53
	37.53

	std
	simulated
	10.7
	10.9
	11.7

	
	resampled
	8.1
	8.1
	8.1


5.5.3.1. Relationships between simulated images and observed resampled images

To access the downscaling model we examined the relationship between the simulated images and the observed resampled images.  Points in the study area are randomly chosen from each of the simulated and resampled images at the three different resolutions for the purpose of the regression analysis. For 62.5m, 1674 pixels are selected, 1015 pixels for 125m and 764 pixels for 250m. Figure 5.11 shows the regression lines and correlation coefficients at the different (250m, 125m, and 62.5m) resolutions. It is evident that the simulated images and the resampled images have a good statistical relationship. As resolutions decrease, the correlation coefficient increases and the relationship between the simulated and the resampled images becomes stronger. This is reasonable because the simulated low resolution image contains much more information from the original image than the simulated higher resolution images. One may note that there are some negative outliers on the regression plot. These outliers must correspond to those white points (noise) distributed in the simulated images. If the noise is removed, the correlation coefficients between the two images should increase and the quality of simulated images will improve. 

To assess this proposition, an adaptive box filter is used to remove this noise. In an image, each pixel (except around the edge) is considered as the center of a NxN moving window. The standard deviation of the NxN values is computed. If the central pixel’s value is larger than a threshold standard deviation, it will be replaced by the local average of surrounding pixels. The adaptive box filter is good for correcting the "salt-and-pepper" random noise. A filter size of 5 by 5 is chosen while the threshold standard deviation is 2.0.  The values of the noise pixels are replaced by the local average of surrounding pixels. 

Figure 5.12 displays the regression lines and correlation coefficients for the filtered images at the different resolutions. When compared to Figure 5.11, Figure 5.12 shows that the correlation coefficients increase after the noise pixels are replaced with the local average of the surrounding pixels. Incorporating the adaptive box filter into the downscaling algorithm improves its performance.

Finally, to quantify the simulation error in the stochastic downscaling of the SPOT-4/VEGETATION image, a statistic known as the standard residual error (SRE) is used. The SRE expresses the average error in a simulated quantity as a proportion of the true value of that quantity (Friedl, 1997 ):
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Where xi  is the simulated value, xi’ is the observed resampled value, and n is the number of observations. 

Table 5.7 shows the standard residual error for the simulated images at the different resolutions. As the resolution decreases, the SRE decreases from 10.4% to 5.3%. These results illustrate that the downscaling model performs very effectively in the generation of higher resolution images.

Table 5.7 Standard residual error

	
	250m (n=764)
	125m (n=1015)
	62.5m (n=1674)

	SRE
	5.3%
	7.3%
	10.4%


5.5.3.2. Accessing the spatial variability of the simulated images
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The semivariogram is often used to investigate the spatial variability of an image. The semivariogram is computed using the method described by Woodcock et al. (1988),

The range, sill and nugget (figure 5.13) are three parameters of semivariograms used to describe the nature of data’s spatial character. The height of the sill infers the overall variability of images (see Chapter 3 for more detail description). Figures 14a, 14b, and 14c present the semivariograms of the simulated images and the resampled images at 62.5m, 125m and 250m resolutions respectively. It is interesting to note that the changing pattern of both the simulated and resampled images is the same. However, the sill for the simulated images is greater than the resampled images, but the simulated images and resampled images both have the same range. An important result, illustrated by these figures, is that the downscaling model changes the variance of the high resolution (20m) image but preserves the same range and sill of the original image. 

5.6 Conclusions

This paper presents the mathematical background for the integration of multifractal and wavelets. A method based on a discrete wavelet analysis is introduced to determine the multifractal measures of an image. 

The results of this study show that the Haar wavelet provides us with an alternative tool to study the scaling behavior of the remotely sensed imagery. The moment-scale analysis of wavelet coefficients is used to investigate the multi-fractal properties of an image. Since a satellite image is not isotropic, three multifractal measures are needed in three different directions. The scaling exponent function K(q) can be modeled by universal multi-fractal parameters ( (Levy index), C1, and H. The testing on the SPOT-4/VEGETATION image verifies that different directions have different multifractal properties. In this study, more importantly, the histogram of the wavelet coefficients can be approximated consistently and accurately by Levy probability distribution functions. The Levy distribution can be described by the multifractal parameters: (, C1 and H. Therefore, this suggests a non-Guassian process, so fractional Levy motion is an appropriate candidate to reproduce the behavior observed in the wavelet coefficients. Hence, the Levy distribution is incorporated into the stochastic downscaling algorithm based on a wavelet-multifractal model. However the algorithm unavoidably generates noise in the simulated image because of the extreme points generated by the Levy distribution. An adaptive box filter incorporating into the downscaling algorithm improves the performance of the algorithm by removing this noise. 

The simulation results show that there is a good relationship between simulated image and resampled image, which is considered as the ‘real’ image. The downscaling model modifies the variance of observed images but preserves the range. However, it should be emphasized that the simulated image generated by this wavelet-multi-fractal model preserves both the image’s spatial macro-structure information and the statistic of original lower resolution image with the exception of its variance. Although only the ‘tall grass’ area SPOT-4 VEGETATION image has been tested using the wavelet-multifractal downscaling model, this model appears to be robust enough to simulate other landcover types.
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