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Chapter 2

Review of Wavelet Analysis

2.1 Introduction

Wavelet theory is a relatively new concept and very useful tool for mathematics, physics, signal processing, image processing and geophysics (Xia and Clarke, 1997). When wavelet transform is applied to an image, the image is decomposed into three detail images and an approximation image at coarser resolution. If the transform continues, three detail images and an approximation image at successive coarser resolution is obtained. This leads to the concept of multi-scale analysis. Therefore wavelet analysis is an appealing tool for scale analysis in remote sensing. In this chapter, I will present the basic principles of wavelet analysis.

First, the concept of a basis function and a scaling function is introduced because they are the key to understanding the wavelet transform. Then the averaging and differencing method (Mulcahy, 1996) provides a sense of how a one-dimensional wavelet transform works. After this, a two-dimensional wavelet transform is introduced. Finally, by comparing the wavelet transform to the Fourier transform, the general concept of wavelet transform and its merits compared to Fourier transform become more obvious.

2.2  Basis functions and scaling functions

Every two-dimensional vector (x, y) is a combination of the basis vectors (1, 0) and (0, 1) because x times (1, 0) is the vector (x, 0), y times (0, 1) is the vector (0, y) and the sum is (x, y). The vector (5, 3) is 5 times the first basis vector plus 3 times the second basis vector. It can also be represented by the combination of vectors (1, 1) and (1, -1). The vector (5, 3) is 4 times (1, 1) and one times (1, -1). The basis vectors of a vector space must meet the condition: each vector in the space can be expressed in one and only one way as a combination of the basis vectors (Strang, 1994; Graps, 1995).  The best basis vectors meet a requirement: the vectors are orthogonal to each other and their dot product is zero (Graps, 1995). For the standard basis, (1, 0) and (0, 1) is orthogonal and the dot product of (1, 0) with (0, 1) is 1*0 + 0*1 = 0. The vectors (1, 1) and (1, -1) also meet the criteria. 

For the three-dimensional space, (1, 0, 0), (0, 1, 0), and (0, 0 1) are examples of the basis vectors.

The above description is about the basis vectors. How are they related to the basis functions? Instead of the vector (x, y), we have a function f(x). For example, f(x) is a signal which can be constructed by adding sines and cosines using combinations of amplitudes and frequencies. In this case, the sines and cosines are the basis functions, which are also the elements of Fourier analysis. Like basis vectors, the condition met by selecting basis functions is: the basis functions are orthogonal and their dot product is zero.

A scaling function can be thought of as linear combinations of dyadically dilated and translated functions. For example, assume there is a signal (or one-dimensional image) over the domain from 0 to 1. The signal/image can be divided into two functions that range from 0 to ½ and ½ to 1. Furthermore, the original signal/image can be again divided into four functions from 0 to ¼, ¼ to ½, ½ to ¾, and ¾ to 1; ……. 

2.3  One-dimensional wavelet transform

Unlike Fourier transform which has only a single set of basis functions: sine and cosine functions, wavelet transform has an infinite set of possible basis functions (Graps, 1995). The simplest wavelet is the Haar wavelet, which will be discussed as an example wavelet in the following section.

Consider a one-dimensional “image” f(x) with a resolution of eight pixels, having the values

11 13 16 16 17 19 17 15

This could be one row of an 8x8 pixel image. The image can be represented by a combination of Haar wavelets. The wavelet transform includes several stages referred to as averaging and differencing. First, we think of the ‘image’ as four pairs of numbers and average them to get the new lower resolution image with pixel values

12 16 18 16

The averages are also called an approximation ‘image’. Obviously this averaging process results in some loss of information. To recover the lost information, we can measure deviations from the various obtained averages. Subtracting the four averages (12 16 18 16) from the first pixels of the pairs (11 16 17 17) yields

-1 0 –1 1

these are called detail coefficients which keep the missing information.

I have transformed the original eight pixels into a new lower resolution (four-pixel) ‘image’ and four detail coefficients. We will get the full decomposition of the original ‘image’ shown in table 1 by repeating this averaging and differencing process on the averages.

          Table 2.1 the decomposition procedure

11     13    16   16   17   19   17    15

12     16    18   16    -1    0    -1     1

14      17    -2   1      -1    0    -1     1

15.5   -1.5  -2   1      -1    0    -1     1

In table 2.1, the first row is the original ‘image’. The second row includes four averages and four detail coefficients. This is first level wavelet decomposition. Similarly, the first two numbers in the third row are the averages of those four averages and the second two numbers are the detail coefficients. Thus, the second level wavelet decomposition includes two averages and detail coefficients in order of increasing resolution. The first number in the fourth row is the average of the preceding two computed averages and the second number in the fourth row is the detail coefficients. The last row is the full Haar wavelet decomposition of original ‘image’ which is the single coefficient representing the overall average of the original image, followed by the detail coefficients in order of increasing resolution. In addition, we can also reconstruct the image to any high resolution by recursively adding and substracting the detail coefficients from the lower resolution versions (Stollnitz et al., 1995a).
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Actually, the averaging and differencing process is a way of computing a wavelet transform based on Haar basis functions: scaling function (kj(x) and wavelet function (kj(x), which are dyadically dilated and translated mother function ((t) and ( (t), respectively. For discrete Haar wavelet transform, (kj(x) and (kj(x) are expressed as:

Where 0 <= k <= 2j-1, and j corresponds to the decomposition level of wavelet transform.

The Haar mother scaling function and mother wavelet function are shown as following:
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Generally, the wavelet transform can be expressed by,

Where N is the level of wavelet decomposition, M is the power of 2 for the length of the function akM is approximation coefficient and dkj is detail coefficient. For more detail description about one- dimensional Haar wavelet, please see appendix I.

2.4 Two-dimensional wavelet transform

As with the Fourier transform, the theory of two-dimensional wavelet transform is a straightforward extension of the one-dimensional transform. The two-dimensional 

wavelet transform is based on a separable multiresolution approximation (Mallat, 1989; Daubechies, 1992). In this case, the two-dimensional scale function written as

((x,y)=((x) ((y)                       (2.5)
where ((x) is one-dimensional scaling function. At this time, there are three wavelets:

X1(x,y)= ((x) ((y), X2(x,y)= ( (x) ( (y), X3(x,y)= ( (x) ( (y)                        (2.6)
Consider one remote sensing image with size M*M at resolution 30m (in remote sensing, it means one pixel represents 30m*30m area in the ground). One-dimensional wavelet transform is firstly performed along the horizontal direction of this image and two resultant rectangular images are obtained. The pixel resolution along the horizontal direction is changed from 30m to 60m. The two decomposed images are further processed along the vertical direction. The pixel resolution along vertical direction is also changed from 30m to 60m. Thus, we obtain four images with a spatial resolution of 60m. One is a (M/2 * M/2) image representing the smoothed data at resolution 60m which is also a coarser resolution approximation image. The approximation image contains the information due to the structures where scales (resolution) are greater than the current scale (resolution). The other three images are wavelet coefficients corresponding to {X1 X2 X3} the wavelet functions. There will be (M/2 * M/2) coefficients in the three images. Due to the separable nature of the decomposition, the three detail coefficients images are called horizontal orientation image (h), vertical orientation image (v) and diagonal orientation image (d), respectively. The detail images show all the structures having a characteristic length between resolution 30m and resolution 60m. The decomposition is recursively applied to the outputs of the approximation image until the desired resolution level is reached. This is called multi-resolution analysis. Therefore, a multi-resolution representation provides a hierarchical framework for the image structure. At different resolutions, the details of an image characterize different physical structures of the scene. For example, at coarser resolution, these details correspond to larger structures. Figure 2.1 shows one-level wavelet decomposition for a simple image. Except for the approximation image which has all positive transform values, all others detail coefficients are fluctuating around zero. The larger absolute transform values in these detail images correspond to sharper brightness changes and thus to the salient features in the image such as edges, lines, and region boundaries (Manjunath and Mitra, 1995). Sometimes the two-dimensional wavelet decomposition use two-dimensional filters combined by high pass filter h and low pass filter l (see Appendix II for detail information). For example, Haar has
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f1 is used to generate approximation image, f2 is for vertical direction, f3 is for horizontal direction and f4 is for diagonal direction. 

2.5  Fourier transform and wavelet transform

The Fourier transform translates a function in the time domain into a function in the frequency domain (Graps, 1995). The Fourier transform breaks the function into a series of sine waves of different frequencies. The basis functions of the Fourier transform are sines and cosines. Wavelet analysis is similar to Fourier analysis in this sense that it breaks the signal into its basis functions -- wavelets, scaled and shifted versions of the “mother” basis functions. 

The wavelets are used as basis functions in wavelet transform. Wavelets can be obtained by dilation a and shifts b of the mother wavelet ( ((x-b)/a). Usually for convenience, the values for a and b, is defined as dyadic: a =2-jand b =k(2j, where k and j are integers (Graps, 1995). 
However there are some distinct differences between Fourier transforms and wavelet transforms. Unlike a Fourier transform which has only a single set of basis functions, sine and cosine functions, a wavelet transform has an infinite set of possible basis functions. Figure 2.2 shows the other wavelets: Dabeuchies-6, Coiflet-3, and Symmlet-6. 

As we know, the sine wave used in Fourier transform is smooth and of infinite length. By examining Figure 2.2, we find that the wavelet is irregular in shape and compactly supported (Mulcahy, 1996). Being compactly supported means that it has a zero value outside of a finite interval (Stollnitz et al., 1995b; Burrus et al., 1998). For Haar wavelets, the compactly supported interval is [0, 1). Their irregular shape lends them to analyzing signals or images with discontinuity's or sharp changes, while their compactly supported nature enables temporal localization of signal or image features (Graps, 1995). When analysing signals of a non-stationary nature, we often need the information about the time and frequency domains of a signal. The sine and cosine functions are localized in frequency but not in space. Therefore, the Fourier transform, provides information about the frequency domain, however time localized information is essentially lost in the process. Small frequency changes in Fourier transform will produce changes everywhere in the time (space) domain. In contrast to the Fourier transform, the wavelet transform allows exceptional localization in both the time (space) domain via translations of the mother wavelet, and in the scale (frequency) domain via dilations (Burrus et al., 1998). This process of translation and dilation of the mother wavelet is depicted in Figure 2.3. In Figure 2.3, the top figure shows the original image, and the bottom figure shows four Haar wavelets functions obtained by translations and dilation at decomposition level 2 and one Haar wavelets function by at decomposition level 1.
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