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Chapter 4

A wavelet based multi-scale image classification analysis and accuracy assessment 

ABSTRACT

This study examines the relationship of wavelet coefficients and classification accuracy within images at different resolutions, and a wavelets-based method for satellite image classification is proposed. A method using wavelet coefficients of evaluating the scale effects on image classification is designed. The results show there is a good relationship between classification accuracy and the wavelet coefficient. The high/low wavelet coefficient reflects the low/high classification accuracy in each land cover types. The relationship of a mixed pixel in terms of pixel error percentage and wavelet coefficient at different resolutions is investigated. The results indicate that the accumulated wavelet coefficient of different resolutions has a better relationship with the pixel error percentage than the wavelet coefficient. A typical way to benefit from this is to extract wavelet features across several scales so that the properties of a remote sensing imagery at multiple resolutions can be used for image classification. In this study, a new classifier algorithm based on wavelet coefficients is designed for improving classification accuracy. In this method, multiscale wavelet coefficients are applied to efficiently construct context information, which incorporates both the properties across multiple resolutions and the properties of surrounding areas into the classification. The study shows the maximum likelihood classifier with inclusion of wavelet coefficients can largely improve land cover classification accuracies. The classification accuracies of those classes with a large region and high local variability might have a relatively high improvement.

4.1 Introduction

The influence of scale has long been a concern in the classification of remotely sensed data. Many classification studies have been motivated by the need to use low spatial resolution data due to the ease of manipulation. However, the degree of information loss coupled with the accuracy of the classification has remained unclear. That is to say, the spatial resolution of an image has important effects on image classification.

Justice et al. (1991), Sadowski et al. (1977) and Latty et al. (1981) examined the relationships between spatial resolution and classification accuracy. These studies demonstrated that classification results were associated with spatial variability. Markham and Townshend (1981) presented a more complicated relationship among the various factors that affected classification accuracy. Their study showed that the scene variance varied significantly among land cover categories and the different spectral bands for the individual land cover types. Changes in classification accuracy as spatial resolution changed depended not only on the scene variance of the individual classes, but also on the relative location of the categories within the feature space. However, mixed pixels on the boundary in coarsening resolution data sets would reduce classification accuracy and thus offset the benefit of lower scene variance (Markham and Townshend, 1981). Recent studies in land cover scaling issues have shown that errors in land cover estimated at a coarser resolution are related to the spatial pattern of the landscape (Moody and Woodcock, 1994, Mayaux and Lambin, 1995; Atkinson et al., 1992; Kloditz et al., 1998). The result indicated that the magnitude of errors is a function of the spatial resolution of the land cover map, the original size of the land cover classes, and the spatial patterns of those classes (Moody and Woodcock, 1994).

Additional work by Cushnie (1987), Moody (1994) and Wang and Howarth (1993) on scale effects also concluded the classification error was influenced by the presence of spatial dependence. Spatial dependence is useful in understanding scale because (i) it simplifies our view of spatial variation; (ii) it identifies the scale of the underlying variation or the form of processes; and (iii) it provides a link between spatial variation and the sample size. However, no concise error model incorporating the effect of scale and spatial dependency has been developed. If spatial heterogeneity and variation are the significant causes for classification error, the wavelet transform may be used to study the relationship of classification with scale. 

The wavelet transform is a powerful mathematics tool recently developed for physics, digital signal/image processing, and geophysics (Xia and Clarke, 1997). When the wavelet transform is applied on an image, the image will be decomposed into three detailed images and an approximation image (Djamdji et al., 1993; Ranchin and Wald, 1993; Darrozes et al., 1997). If the transform is continued, the approximation image is in turn decomposed further into three detail wavelet coefficients images and another approximation image at successive scale (or spatial resolution). Therefore, the wavelet transform leads to the concept of multi-scale analysis (Ranchin and Wald, 1993). In Chapter II, it was shown that  wavelet coefficients are a measure of the intensity of the local variations of an image for that individual scale. Therefore, wavelet analysis may show us how much the local variation is reduced for each aggregated level or scale change and provide a potential predictor for classification errors induced by resolutions. 

One of the objectives of this study is to investigate the relationship between scale and classification error using the wavelet analysis. The wavelet coefficients are used to investigate image classification accuracy at different resolution. A typical way to benefit from the results is to extract wavelet features across several scales so that the properties of a remote sensing imagery at multiple resolutions can be used for classification. The other objective of this study is to design a multi-scale classifier incorporating the wavelet coefficients into the classification process to improve classification accuracy. In this method, the multi-scale wavelet coefficients are applied in order to efficiently build context information, which incorporates both the properties across multiple resolutions and the properties of surrounding areas into classification. The number of scales used is naturally adaptive so as to avoid unnecessary computation due to multi-scale analysis.

In the next section, the wavelet transform is introduced along with a discussion on multi-resolution wavelet analysis. In section 4.3, the method for investigating the relationship between wavelet coefficients and classification accuracy is illustrated. The multi-scale classification algorithm is presented in section 4.4 and conclusions are stated in section 4.5.

4.1.1 Data Sources

The primary data used in this study was Landsat-5 TM data which was acquired on October 1996. Study area is in the vicinity of Albuquerque, New Mexico, The data set includes Landsat-4 TM (bands 3, 4, 5, and 7) image with a resolution of 30m and an independent land-cover map (resolution 30m) of the same area. 

4.2  Theory of wavelet analysis
Wavelets are mathematical functions that satisfy the basic requirement that they should integrate to zero, fluctuating above and below the x-axis (Graps, 1995). This is the original meaning of wavelets. 
There are many wavelet families each having several different functions. The simplest wavelet is the Haar wavelet, which will be discussed as an example wavelet in the following section. 

4.2.1 Wavelet transform

Like sine and cosine in Fourier analysis, wavelets are used as basis functions in representing other functions. Once the wavelet (called the mother wavelet) ((x) is fixed, wavelets can be obtained by dilation a and shifts b of the mother wavelet (((x-b)/a). The wavelet transform decomposes any function into a summation of wavelets, which can be expressed as:
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Above formula is for the continuous wavelet transform.
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As to the discrete wavelet transform, usually for convenience, a and b, are defined as dyadic: a =2-jand b =k(2j, where k and j are integers (Graps, 1995), the discrete wavelet transform can be written as:

The respective weights (w) of the wavelets are called the wavelet coefficients, which are a measure of the intensity of the local variations for a particular scale. (k,j(x) are the basis functions that are linearly-independent and orthogonal. There is a lot of complex algebra involved in computing these basic functions, but fortunately most of these functions are already calculated and are available from a wavelet bank (Young, 1993).
4.2.2. Multiresolution wavelet analysis (MRA)
The multiresolution analysis uses the wavelet transform to reorganize the image information into a set of details in a sequence of closed subspace (Mallat, 1989; Lindsay et al., 1996). The details of an image at a certain resolution can be represented by the difference of its approximation image at a specific resolution and the lower (coarser) resolution approximation image (Ranchin and Wald, 1993; Darrozes et al., 1997; Bacry et al., 1993). 
The Haar wavelet, the simplest wavelet, is chosen to explain how wavelets work. The Haar wavelet likes a step function which has values from 1 to -1 on [0, ½) and [ 1/2, 1) respectively. Let’s begin with a simple image. The image has four pixels (x1, x2, x3, x4) with the values 10, 20, 30, 40 (assume j =0) and cab written as 2 by 2 matrix:
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The Haar basis functions at this level are:
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So the wavelet coefficients at the resolution 2 (j=1)are:

w1 = ½(x1 + x2 + x3 + x4) = 50  ……….(4.5)

w2 = ½(x2 + x4 - x1 - x3) = 10
……….(4.6)
w3 = 1/4(x1 + x2 – x3 –x4) = -10 ………(4.7)

w4 = 1/4(x1 + x4 - x2 - x3) = 0 ………..(4.8)
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The wavelet coefficient image in matrix form is:

The wavelet basis functions are thought of as a set of filters (1,1, which are equal to an average filter, (1,2 is a high pass filter in the horizontal direction and (2,1 and (2,2 are high pass filters in vertical and diagonal directions. So w1 records the approximation information of the image, and w2, w3 and w4 provide the detail information on the horizontal, vertical and diagonal structure. 

Wavelet variance (WVAR) map, which is generated by adding the absolute values of w2, w3, and w4, reflects the intensity of the local variations for a particular scale. The wavelet local variability measure (VAR) is the root mean square of WAVR map. These concepts have been presented in more detail in Chapter 3. 

4.3 Classification accuracy and wavelet coefficients

In this study, the wavelet local variability measure (VAR) is employed to examine the classification accuracy with changing resolutions.

4.3.1 Multi-Resolution data generation for multi-spectral TM image

The raw data had a nominal resolution of 30 meters. For more realistic representation of the structure of coarser images, the point-spread function (PSF) of the TM sensor is added in the spatial degradation process. The PSF of a sensor integrates the radiative response from a target pixel with its surrounding pixels. The operation is the convolution of PSF (a weighted filter) with the original scene (Forster and Best, 1994) resulting in a degraded image. The advantage of using PSF as opposed to a simple averaging filter is that it simulates the sensor response more closely. Therefore, a 5*5 PSF filter is used for modifying the TM data. For example, a 60m image (2048*2048 pixels) is simulated by applying a PSF to the original 30m image. The filtered image is then resampled to reduce the resolution by one-half using a cubic convolution resampling method. The same PSF was applied to the 60m image, which is now 1024*1024 in size, followed by the cubic resampling, in order to produce a 120m image (512*512 in size). The procedures used in producing the spatial degradation are outlined in Figure 4.1. A series of 44 images are generated for different resolutions (60m, 120m, 180m, 240m, 300m, 360m, 480m, 600m, 720m, 960m) and spectral bands (3, 4, 5, and 7).

4.3.2 Multi-scale classification on TM image

The maximum likelihood classification method is used in this study. The maximum likelihood classification is based on the probability density function associated with a particular training sample statistics. Pixels are assigned to the most likely class based on a comparison of the individual classes’ posterior probability.  The statistics from a set of training sites is used to estimate the posterior probability that a pixel belongs to a specific class. 

Areas, which are apparently uniform on the original resolution (30m) TM images, are selected for generation of the training statistics. The 30 meter training statistics for all four bands are put into a maximum likelihood classifier and used in classifying the entire image for each resolution. This approach for generating the training statistics is selected because sufficient pure pixels were not available for a majority of the classes at the coarser resolutions. But, in classification scheme, the class variance-cvariance matrix generally will change with resolutions, which will lead to change the class decision boundaries. Therefore, this approach may not give good statistics for classification at resolutions other than 30 meter. However, Markham and Townshend (1981) stated that the scale variation in the training statistics showed only minor influence on the classification accuracy. Their results suggested that this approach to training statistics generation is valid for use in this study.

4.3.3 Classification accuracy and pixel error percentage

The classification accuracy for a specific class is equal to the number of 30m pixels in replicated coarser image, which belongs to that class, divided by the total number of 30m pixels on the land cover map.  To obtain each pixel’s percentage classification error, the 30m land cover map serves as the reference data. Each pixel from the coarser resolution classified maps can be thought as an individual grid cell. For example, a grid cell in 120m resolution landcover map contains sixteen 30m pixels on the reference map. These will be overlaid onto the base (30m) land cover map. Each grid cell will be labeled based on the most frequently occurring cover type among the 30m resolution pixels for that specific sixteen pixel grid. 

This raises a question of how pure the pixel is for each coarser resolution. In this study, a pure pixel percentage is defined as the number of 30 meter pixels that are the same as the coarser class pixel divided by the total number of 30 meter pixels in the coarser pixel. For example, a pixel at 120m resolution covers sixteen pixels of 30m resolution. If a pixel at 120m resolution is assigned as class 1 and there are eight pixels assigned as class 1 in the corresponding sixteen pixels at 30m resolution, the pure pixel percentage is 50%. Then the pixel error percentage (PEP) is calculated by subtracting the pure pixel percentage from 100%. Therefore, in the above example, the PEP is 50%. This quantity is calculated for each classified map. The overall pure pixel percentage of a class is obtained by dividing the sum of pure pixel of all pixels in this class by the pixel number of this class. 

4.3.4 Wavelet variance (WVAR) generation

To avoid performing the wavelet transform on all 4 bands of the TM images, principal components analysis (PCA) is employed. The first component of the PCA contains the maximum possible variance of the original images. A wavelet transform is performed on the first PCA component image and a series of WAVR maps at different resolutions are generated . The wavelet local variability (VAR) within a class is calculated by:
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Where c represents class c, Pk is a pixel in class c, and N is the pixel number of class c.

4.3.5 Analysis and results

The method proposed above is intended to answer two primary questions. First, how does the resolution affect the classification accuracy of each land cover class? Second, is there any relationship between wavelet variance and classification accuracy for the changing resolutions?  Figure 4.2 shows the classification map at 30m resolution. 

The study area is dominated by three spectrally distinct land cover classes-deciduous forest, grass and urban although other classes are also found in the classified Landsat TM scene. The dominant three classes are the focus of the investigation. Figure 4.3 shows the pure pixel percentage of the three classes (deciduous forest, grass and urban) in the scene as well as their response to progressive aggregation. The results in Figure 4.3 show an increase in pure pixel percentage for the urban class as the spatial resolution is coarsened from 60m, 120m, 180m, 240m to 600m. Figure 4.4 shows the wavelet local variability (VAR) decrease for the urban class with coarsening resolution. This suggests a decrease of internal variability in urban class as the spatial resolution is coarsened. The classification errors that occur more frequently in the 60m resolution data can be attributed to pixels that are gardens, street and tree areas being assigned to the grass and deciduous forest categories. As spatial resolution is coarsened this type of variance is reduced, resulting in improved classification performance. Starting at the 600m resolution, the classification accuracy begins to decrease rapidly.  This is a result of the maximum likelihood decision rule operating on mixed pixels and mixed pixels becoming predominant at the coarser resolution. As the proportion of a class within a pixel decreases, the pixel’s signature will migrate away from that class, towards another class (Markham and Townshend., 1981). The point at which the pixel is classified as another class is dependent on the probability density functions of the two classes.  In addition, Figure 4.4 illustrates that the urban class has the highest internal variability at the different resolution compared to other classes; while the classification accuracy of the urban class is lower at all resolutions than the grass or deciduous forest classes.

From Figure 4.3, it is clear that the classification accuracy of grass category is considerably higher at all resolutions than the deciduous forest and urban areas. Figure 4.4 shows the internal variability within the grass category is lower at all resolutions. The grassland cover class is very uniform. Therefore, the classification accuracy of grass category has only a small change before the 600m resolution level but begins to markedly decrease at this resolution. This result is due to the misclassification of agriculture to grass starting from the 600m resolution. The internal variability in this class also shows small changes before 600m resolution but an increase beginning at the 600m resolution. The misclassification of agriculture results in the increase of internal variability, which is reflected by VAR value for this class. The rational for this problem is very straightforward. The land cover map at 30m resolution shows that there are parts of agriculture in the grass areas. At 600m resolution and greater, some boundary pixels for the grass and agriculture areas which have high wavelet coefficients are assigned to the grass category.

Figure 4.3 also shows that the curve of the classification accuracy of the deciduous forest has a similar form as the curve of the grass. But the classification accuracy of the deciduous forest is lower than that of the grass at all resolutions. The reason is that the deciduous forest class has a larger internal variability than the grass. Figure 4.4 shows the wavelet local variability of the deciduous forest is larger than that of the grass at all resolutions. The Figure also shows that there is a decrease in wavelet variance from 60m to 300m resolutions, which corresponds to the small increase in classification accuracy for the same resolutions in Figure 4.3. One explanation is that some of the grass and agriculture categories are likely to occupy a smaller part of the feature space in the deciduous forest areas, and hence, there should be a reduction in overlap class boundary and a decrease in wavelet local variability with the coarsening resolution. The land cover map shows there are small portions of irregular shaped grass regions contained within the deciduous forest areas. These boundary pixels lead to misclassification at coarser resolutions and a rapid decrease of the classification accuracy starting at 480 meter resolution, but the corresponding wavelet local variability only has a small increase at this resolution due to mixed pixels being assigned to deciduous forest category. After this resolution, the classification accuracy decreases gradually because more and more mixed pixels exist. The wavelet coefficients, also, decrease gradually because the image is becoming more and more uniform.

From these results, it is clear that there is good relationship between wavelet local variability and classification accuracy in study area. Generally, the high/low wavelet variance reflects the low/high classification accuracy. It also means that internal variability has an important effect on classification accuracy. In Figure 4.3, the grass category has higher classification accuracy than the deciduous forest and urban classes, while the classification accuracy of the deciduous forest class is better than that of the urban at all resolutions. According to Figure 4.4, the urban class has a high wavelet variance, the deciduous forest class is second, and the grass class has smallest wavelet variance at all resolutions, which indicates a reverse ranking from Figure 4.3. The analysis also indicates the classification accuracy of a land cover class with high wavelet variance, which reflects its internal variability, can be improved by reducing the resolution of the imagery.  However, boundary pixels play an opposite effect on the classification accuracy at coarser resolutions. As the resolution is more and more coarsened, the mixed pixels occupy a greater proportion of the class, and hence it leads to a decrease in the classification accuracy. 
The PEP described in the previous section is a method for representing the complexity of a mixed pixel. A series of PEP maps at different resolution are generated to investigate the relationship between the PEP and the wavelet variance. 

Correlation analysis relating to PEP maps and wavelet variance maps at the different resolutions are used. To remove the effect of the spatial autocorrelation, 1000 pixels are randomly selected from the PEP maps and the same 1000 from the VAR maps for each resolution. Because of the aggregation, a few sampling points may be within the same grid as the resolution is coarsened. These points were removed. Therefore, as resolution decreases, the sample size reduces. Table 4.1 shows the correlation coefficients of the pixel error percentage and the wavelet variance at different resolutions. The correlation coefficients indicate that there is slight relationship between the pixel error percentage and wavelet variance (WVAR) at most resolutions. However the correlation coefficient 

Table 4.1.  Correlation coefficient of wavelet variance and pixel error percentage

Res. (m)
60
120
180
240
300
360
480
600
720
960

Sample size
1000
998
994
990
987
982
968
948
929
893

Coeff.
0.68
0.61
0.595
0.59
0.582
0.53
0.502
0.5
0.43
0.391

decreases as the resolution coarsening. PEP is always calculated based on the 30m resolution land cover map, which means that the PEP at the coarser resolution image accumulates information from all finer resolution images. However, the wavelet variance is calculated each time from its direct upper-level image. The wavelet variance for a resolution is independent from the other resolution images. As the resolution coarsening, more and more pixels are mixed pixels resulting in increasing the pixel error percentage but the coarser resolutions pixels with high PEP may have smaller wavelet variance because the local variability is low. Therefore, a modification is made in which the accumulated wavelet variance vs. pixel error percentage is used.  The accumulated wavelet coefficient is the sum of the wavelet variance of all finer resolutions and the current resolution. The same procedure as before is used to calculate the correlation coefficient of the accumulated wavelet variance and the pixel error percentage at different resolutions. Table 4.2 shows the correlation coefficients at different resolution for the study area. The correlation coefficients are higher at different resolutions than previously, indicating a better relationship between the accumulated wavelet variance and the pixel error percentage. These results indicate that the accumulated wavelet variance may be used to describe the pixel’s classification accuracy at coarser resolution using higher resolution images. 

Table 4. 2.  Correlation coefficient of accumulated wavelet variance and pixel error percentage

Res. (m)
60
120
180
240
300
360
480
600
720
960

Sample size
1000
998
994
990
987
982
968
948
929
893

Coeff.
0.68
0.71
0.76
0.75
0.81
0.84
0.83
0.85
0.89
0.83

4.4  Multi-scale classification of TM imagery

The above analysis shows that a good relationship exists between the degree of classification accuracy and the magnitude of the wavelet coefficients. It also provides an intuitive method for incorporating the wavelet coefficients into a classifier, which in turn may lead to improved classification accuracy. In this section an algorithm for multi-scale classification is described with its experimental results presented and discussed.

4.4.1 Algorithm

The sequence of procedures used in the algorithm is outlined in Figure 4.5. The following describes the detail of the proposed algorithm.

The original four bands (3, 4, 5, and 7) of a TM image and their corresponding wavelet coefficients data derived from wavelet transform without standard downsampling (the removal of odd or even columns and rows from the transformed image), which is called an over-complete wavelet transform (Unser, 1989, 1995), will be used as input into the maximum likelihood classifier.

4.3.1.a Selection of wavelet transform

In the algorithm, the 4-level Haar over-complete wavelet transform is selected. Comparison with wavelet transforms that have longer filters, such as the Daubechies-8 and Daubechies-4 transform (Daubechies, 1992), shows that the differences between those transforms are negligible. On the other hand, the Haar transform has the best localization property since its wavelet filter is the shortest (Young, 1993). 

4.4.1.b. Generation of wavelet input data

The Haar over-complete wavelet transform is applied to 4 bands (3, 4, 5, and 7) of TM image. For each band, three directional wavelet coefficients for four levels are generated by the over-complete Haar wavelet transform. This means 48 (4 * 4 * 3) bands of wavelet coefficients data will be generated. To reduce input data dimensions, Principal components analysis (PCA) is applied to the four resolutions of the wavelet coefficients for each direction of each band and only the first PCA component is retained. This reduces the data set to 12 images (4 bands and 3 directions) denoted wavelet band images. After the data reduction, a low pass filter is applied to each wavelet band image in order to incorporate the properties of surrounding areas into classification.  Three window sizes 3 x 3, 5 x 5, and 7 x 7 are tested. The results show that the window size 5 x 5 is optimum. The twelve new images are denoted as filtered wavelet band images. At this stage, two kinds of wavelet band images have been generated for input into the classification scheme separately. 

4.4.1.c. Classification

The classification scheme selected for the analysis is the same as in the previous section. The same major land cover classes are used as previously. In addition to the original four bands (3, 4, 5, and 7) of TM image, the three orientations of wavelet band images derived from the Haar wavelet transform for each band are incorporated into the classification analysis. Therefore, a total of sixteen images are used as input. A traditional supervised training involves the selection of contiguous pixels or blocks of pixel from representative locations across the image as training samples (Gong, 1994). Eight sets of training statistics corresponding to eight land cover classes are used in the maximum likelihood classification (MLC). 

In order to provide a basis for comparison, the four bands of TM image at 30m without wavelet coefficient data are classified using MLC. 

4.4.2. Classification analysis and results

The classification accuracy derived from original four bands of TM image and filtered wavelet feature image (denoted as TMW) are compared to the classification accuracy calculated for the original four bands of TM image (denoted as TMO). The result is also compared to that from the classification by TMW without low pass filter on wavelet coefficients (denoted as TMWW). 

Figure 4.6 shows the classification results obtained from TMW. In order to determine the accuracy of the three classification schemes, approximately 2000 individual test pixels are randomly selected from land-cover map as referenced data and compared with the classification results.

The metrics used for comparison for the two approaches are the error matrix and the Kappa coefficient. The error matrix (also called the confusion matrix) is a k x k matrix where k is the number of classification categories. The error matrix provides the counts of how each of the test points is classified. The rows represent the actual classified data by category and the columns represent the reference data by category. Correct classifications are recorded in the matrix diagonals, while incorrect classifications are found in off-diagonal positions. “The error matrix allows measurement of overall accuracy, category accuracy, producer’s accuracy (percentage correct in the columns) and user’s accuracy (percentage correct in the rows)” (Congalton 1991). Error matrices for each of the experiments are given in the next section. 

The kappa coefficient is a measure of association between two categorical variables.  In remote sensing, the kappa coefficient is used to measure the agreement between the actual land cover classes and the classified classes. A value of 0 indicates no agreement between the two variables except what is expected by chance; a value of 1 indicates perfect agreement, with all the values falling on the diagonals (Agresti, 1990). 

If n(i,j) represents the error matrix count in the ith row and jth column; n(i,+) is defined as the sum of the ith row and n(+,j) represents the sum of the jth column; and n represents the total count in all cells of the error matrix;  the estimate of kappa is (Congalton, 1991):
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To obtain a measure of agreement for each class, the conditional Kappa coefficient of agreement is calculated by the following:
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where:

Ki = Conditional Kappa Coefficient of Agreement for the ith category

N = the total number of observations

Pii = the number of correct observations for the ith category

Pi+ = the ith row marginal

P+i = the ith column marginal.
The classification accuracy for TMO and TMWW is 0.71 and 0.76 respectively. There is good improvement for the TMW where the overall accuracy is 0.80.

Table 4.3. Error matrix and conditional Kappa values for the classification results of TMO


water
urban
soil
shrub
deciduous forest
evergreen forest
grass
crop
Kappa

water
5
0
0
0
0
1
0
0
0.831

urban
0
40
0
0
1
5
23
4
0.547

soil
0
1
8
0
0
0
4
0
0.592

shrub
0
0
0
18
6
1
0
0
0.774

deciduous forest
1
1
0
0
375
44
27
9
0.837

evergreen forest
0
3
1
0
30
131
5
0
0.737

grass
0
25
5
0
21
3
1086
13
0.892

crop
0
1
0
2
5
4
11
47
0.653

Total
6
71
14
20
438
189
1156
73
0.713

Table 4.3, 4.4, and 4.5 show the confusion matrix and conditional Kappa values for the classification results obtained by applying the MLC to the TMO, TMW and TMWW data set respectively. The results indicate that classes 1 (water), 5 (forest) and 7 (grass) have relatively high accuracies (0.831, 0.837 and 0.892, respectively). This demonstrates that from spectral information only these three classes are well discriminated (Gong, 1992). Class 2 (urban) has a lower Kappa value (0.547) because of its high spectral confusion with class 7 (grass). Some pixels that are located in gardens, street and tree areas are being assigned to the grass and forest categories. However, with the inclusion of wavelet coefficients (table 4.4), the Kappa value improved by 0.11 (from 0.55 to 0.66). 

Figure 4.7 shows the conditional Kappa values for the eight land use classes of the TMW, TMO and TMWW. The classification accuracies of TMW for classes 2 (urban), 5 (deciduous forest) and 7 (grass) demonstrate an improvement when compared to the TMO but the improvements for the other classes (water, soil, shrub and evergreen forest) are not sizeable. These results indicate that the TMW performs well for land cover classes that extend over large areas. Actually, classes urban, deciduous forest and grass are the major land cover types in this study due to their continuous areal extent. 

Table 4.4. Error matrix and conditional Kappa values for the classification results of TMW


water
urban
soil
shrub
deciduous forest
evergreen forest
grass
crop
Kappa

water
5
0
0
0
0
1
0
0
0.831

urban
0
56
0
0
2
3
21
5
0.658

soil
0
2
9
0
0
0
2
0
0.6

shrub
0
0
0
22
5
1
2
1
0.794

deciduous forest
1
1
0
0
390
33
15
3
0.881

evergreen forest
0
0
0
0
22
132
17
0
0.748

grass
0
21
7
0
19
6
1114
12
0.923

crop
0
3
0
0
5
7
15
40
0.612

Total
6
83
16
22
443
183
1188
61
0.798

Table 4.5. Error matrix and conditional Kappa values for the classification results of TMWW


water
urban
soil
shrub
deciduous forest
evergreen forest
grass
crop
Kappa

water
4
0
0
0
0
2
0
0
0.75

urban
0
49
0
0
3
5
25
5
0.563

soil
0
2
10
0
0
0
1
0
0.769

shrub
0
0
0
24
4
1
1
1
0.774

deciduous forest
2
3
0
0
380
35
18
5
0.857

evergreen forest
0
0
0
0
22
132
17
0
0.772

grass
0
24
10
0
24
8
1098
18
0.93

crop
0
2
0
0
4
7
12
45
0.643

Total
6
80
20
24
437
190
1172
73
0.757

The class 8’s (crop) classification accuracy decreased when the wavelet coefficients were incorporated into the classification. All of the classes (water, soil, shrub, evergreen and crop), which showed little or no improvement in the classification accuracy with the TMW data set, have small areal extent and have a high degree of fragmentation. This produces a substantial number of boundary pixels for TMW, which tends to be misclassified.  One of possible reasons is that the wavelet coefficients tend to emphasize the edge pixels, which reinforce the problem of misclassification. Another reason may be related to low pass filtering on wavelet coefficients, which generally produces many more boundary pixels for TMW. Referring to table 4.5, we see that the TMWW, compared to the TMW, improves the classification of classes soil, evergreen forest, and crop, which all have small areal extents and have a high degree of fragmentation, because the TMWW reduces the number of boundary pixels.

It is also shown that TMW works very well for classes with high local internal variability. For example, the class urban’s classification accuracy improved because its high local variability is incorporated into the classification by use of the wavelet coefficients. The overall classification accuracy obtained by applying the MLC to the TMW data set showed a substantial increase.

4.5 Conclusions

This study investigates the relationship of wavelet coefficient and classification accuracy for images at different resolutions and develops a wavelet based algorithm for use in image classification. 

Generally, the classification accuracy of each land cover class increases and wavelet coefficient within the land cover classes decreases with the coarsening resolution. The high/low wavelet coefficient indicates the low/high classification accuracy for each land cover types. Internal variability is also shown to have an important effect on the classification accuracy for each type of land cover. The analysis indicates that by reducing the resolution of the imagery, the accuracy of classifying land cover with the high wavelet coefficient, which reflects the internal variability, can be improved. For example, the urban class has higher magnitude of wavelet coefficients. At coarser spatial resolution, the boundary pixel of the land cover classes affect the classification accuracy especially for irregular and small size classes.  Therefore, the relationship of mixed pixel in terms of the PEP and the wavelet coefficient at different resolutions is investigated in more detail.

Correlation coefficients for the different resolutions show a relationship between the pixel error percentage and wavelet coefficients. As the spatial resolution is coarsened, there is a decrease of the correlation coefficients for the PEP vs. wavelet coefficient. The reason is that the PEP is always calculated based on the 30m resolution land cover map, which means the PEP at coarser resolution image accumulates information of all up-level images. However, the wavelet variance is calculated each time from its direct upper-level image. The wavelet variance for a resolution is independent from the other resolution images. In this study, therefore, for more accurately investigating both relationships, the accumulated wavelet coefficient rather than the wavelet coefficient is used to calculate the correlation coefficients at different resolutions. The correlation coefficients are higher at different resolutions, indicating a better relationship between the accumulated wavelet variance and the pixel error percentage. These results indicate that the accumulated wavelet variance may be used to describe the pixel’s classification accuracy at coarser resolution using higher resolution images. 

A multi-scale classification algorithm based on wavelet transform was proposed and evaluated. The algorithm generates wavelet coefficient images, which are input into a maximum likelihood classifier along with the four TM spectral bands (bands 3, 4, 5 and 7). The results show the maximum likelihood classifier with inclusion of wavelet coefficients can improve overall land cover classification accuracies by 9%. The classification accuracies of those classes with a large regional extent and high internal variability show relatively greater improvement. However, some boundary pixels especially for classes, which have a small areal extent, high degree of fragmentation, and irregular shape may be misclassified due to the inclusion of wavelet coefficients. Therefore, further research will focus on the boundary misclassified pixels by using wavelet coefficients.
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