Appendix II One-dimensional Wavelet Transform Fast Algorithm


Appendix II

One-dimensional Wavelet Transform Fast Algorithm

This appendix describes an effective method for calculating the approximation coefficients (averages) and detail coefficients (differencing).

It is often convenient to express the wavelet decomposition by means of matrices. Consider a one-dimensional “image” f(x) with a resolution of eight pixels, having the values

11 13 16 16 17 19 17 15

And then the original image and wavelet decomposition of the image f(x) can be also expressed as (see Appendix I),

f(x) =[(03 (13 (23 (33 (43 (53 (63 (73] [11 13 16 16 17 19 17 15]T                            (a2.1)

f(x)= [(02 (12 (22 (32 (02 (12 (22 (33] [12 16 18 16 –1 0 –1 1] T                  (a2.2)

f(x)= [(01 (11 (01 (11 (02 (12 (22 (32] [14 17 –2 1 –1 0 –1 1] T                   (a2.3)

f(x)= [(00 (00 (01 (11 (02 (12 (22 (32] [15.5 –1.5 –2 1 –1 0 –1 1] T                         (a2.4) 

Thus, there must be a relationship between [( j] and [( j-1], [( j] and [( j-1]. Where [( j] is [(0j (1j (2j (3j …… (kj] denoted as ( j(x). [( j] is [(0j (1j (2j (3j …… (kj] denoted as X j(x). k=0, 1, …… 2j. It means there must exist a matrix Pj and Qj such that
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The scaling functions and wavelets at level j-1 can be expressed as a linear combination of finer scaling functions at level j. 
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In fact, let us go back to look at the equations (a1.1), (a1.14) of scaling functions and wavelet basis functions. Equation (a1.1) and (a1.14) can be expressed as,

For Haar wavelet, p0 = c0 =1, p1 = c1 =1, q0 = c0 =1, q0 = -c1 =-1. 
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Hence, matrices P3 and Q3 in V3 can be written as,

Where c1=1 and c2=1.

The rows of Pj are shifted version of one another, as are the rows of Qj. The non-zero coefficients in both matrices are c0 =1 and c1=1. Using the two matrices, we can reconstruct approximation coefficients (Aj)at level j from lower resolution version approximation coefficients (Aj-1)and detail coefficients (Dj-1). The reconstruction equation is given by

[image: image6.png]
The reconstruction procedure is also called inverse wavelet transform. Figure a2.1 shows the procedure.
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In our example, we can get,

[11 13 16 16 17 19 17 15] T = P3 [12 16 18 16] T + Q3 [–1 0 –1 1] T                         (a2.14)

[12 16 18 16] T = P2 [14 17] T + Q2 [–2 1] T                                   (a2.15)
[14 17] T = P1 [15.5] T + Q2 [–1.5] T                                                 (a2.16)

According to the reconstruction equation, we can think about if there exist two matrices Hj and Hj for obtaining Aj-1 and Dj-1 from finer resolution Aj. The equations are given by
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The matrices do exist. They must satisfy the relation (Stollnitz, 1995)
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For Haar wavelet, the matrices L3 and H3 are given by

Where c1=1 and c2=1.

Thus, we can further get the following relation
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Once again, the finer resolution approximation (Aj) can be decomposed into coarser resolution approximation (Aj-1) and detail coefficients (D j-1) by means appropriate matrices (Lj) and (Hj). The decomposition process is also called wavelet transform or wavelet analysis shown in Figure a2.2. The decomposition procedure is known as pyramid algorithm. The (Lj) and (Hj) are care called analysis filter, while P and Q are called synthesis filters (Stollnitz, 1995).

The three-stage wavelet decomposition in our example is shown as follow.

[12 16 18 16] T = L3 [11 13 16 16 17 19 17 15] T                          (a2.23)

        [–1 0 –1 1] T = H3 [11 13 16 16 17 19 17 15] T                  (a2.24)

[14 17] T = L2 [12 16 18 16] T                                      (a2.25)

       [–2 1] T = H2 [12 16 18 16] T                    (a2.26)

[15.5] T = L1[14 17] T                                                (a2.27)

      [–1.5] T = H1[14 17] T                               (a2.28)

The wavelet decomposition equation (a2.17) (a2.18) are also written as,
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Where l and h are the row entries of matrices Lj and Hj, respectively.

Similarly, the wavelet reconstruction equation (a2.13) is also written as,
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Where p and q are the column entries of matrices P and Q, respectively. Since L=1/2PT and H=1/2QT, the reconstruction equation (a2.13) is further written as,

Generally, the key for this pyramid decomposition is to find appropriate non-zero coefficients (c0, c1, ……, ck) in the matrices H, L. Actually, these non-zero coefficients can be generated from scaling function ((x). As we know, Haar wavelet has only two non-zero coefficients (c1=1 and c2=1), while Daubechies-4 has four coefficients (shown in table ). Observing the matrices H and L and equation (a2.30) (a2.31), we can think the l and h as convolution filter functions. l is thought of as a low-pass filter something like a moving average of some points, while h is thought of as a high-pass filter. Those non-zero coefficients in matrices are called filter coefficients. For Haar wavelets, the approximation coefficients (averages) are the output of the low-pass filter which consists of the average of every two samples, and the output of the high-pass filter consists of the [image: image16.wmf]A
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show the procedure of Haar wavelet decomposition (shown in Figure a2.4).

[image: image18.wmf])

8

.

2

(

)

2

(

)

(

)

7

.

2

(

)

2

(

)

(

a

k

x

q

x

a

k

x

p

x

k

k

k

k

-

=

-

=

å

å

f

c

f

f


References:

Edwards T., 1992, Discrete Wavelet Transforms: Theory and Implementation, Research report, Standford University.

Mallat S., 1989, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 11, pp 674-693.
Stollnitz E. J., DeRose T. D., and Salesin D. H., 1995, Wavelets for computer graphics: a primer, Part I, IEEE Computer Graphics and Application, 15(4), pp 85-94.

� EMBED Equation.3  ���



� EMBED Equation.3  ���



� EMBED Equation.3  ���



� EMBED Equation.3  ���



� EMBED Equation.3  ���



�

Figure a2.2. wavelet decomposition (Edwards, 1992)
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Figure a2.1. wavelet reconstruction (inverse wavelet transform) (Edwards, 1992)
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Figure a2.3 Wavelet transform(Mallat, 1989)
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Figure a2.4. Wavelet decomposition (the resolution will be reduced after each level decomposition)
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