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Chapter 3

Scale-dependent analysis of satellite image based on wavelet transform

ABSTRACT

This paper develops a wavelet-based method for scale-dependent imagery analysis in remote sensing. The root mean square energy of the wavelet coefficients (WRMS) at each resolution is calculated and plotted against resolutions to investigate the relationship between spatial heterogeneity and resolution in three directions: horizontal, diagonal, and vertical. Furthermore, the study investigates the possibility of using the root mean square of wavelet variance map as an indicator of the spatial variability. Three kinds of land cover type: grassland, urban and forest are used as examples for testing the wavelet-based method. Also, four standard and commonly used mother wavelets: Haar, Daubechies, Bior, and Symmlet are selected to test the possibility of using wavelet for scale-dependent analysis. The study shows that only the results obtained from Haar wavelet-based methods are close to those of local variance and semivariogram. The results indicate that: 1. Haar wavelets can be used to investigate the scale-dependent and spatial structure of an image; 2. Haar wavelets provides another method for selection of optimal sampling size; 3. The second peak in the graph of Haar wavelet variability as a function of resolution may be related to spatial difference between the objects in an image.

3.1 Introduction

With the development of Geographical Information System (GIS) and remote sensing techniques, the resultant data has provided continuous samples of the earth surface from local, regional to global scales. The flood of remote sensing and related GIS data offer new potential and challenges in the development and implementation of techniques for dealing explicitly with scale (Goodchild and Quattrochi, 1997). Investigating scale variations associated with changing satellite sensor resolution is a major challenge facing the remote sensing discipline (Meyer and Lewis, 1996). A lot of literature studies related to different scales (resolutions) of remotely sensed data used in land use/cover and vegetation mapping (Walsh et al., 1997; Moody, 1995), environment modeling (Bian, 1997), biophysical and landscape process studies (Turner and Gardner, 1989, 1991; DeFris et al., 1997), show that models and measurements of many phenomena are scale-dependent. The model validation and error evaluation related to scale (resolution) effects demands attention (e.g. De Cola, 1993; Ehleringer and Field, 1993; Foody et al., 1997). In other words, the factor of scale or resolution plays an important role in the employment of remotely sensed imagery for remote sensing and GIS research (Cao and Lam, 1997; Townshend and Justice, 1988, 1990, 1995; Strahler et al., 1986). 

There are many issues related to scale in remote sensing. A major issue is how to process scale dependency, an inherent property of geographic phenomena. If the geographic pattern under observation varies with scale, the geographic phenomenon is considered scale-dependent. “The scale-dependent nature of the phenomena under observation must be known to guide the collection, processing, and interpretation of remotely sensed data” (Davis et al., 1991). Scale problems may not occur in spatially homogeneous landscapes because the information can be integrated directly into coarser resolutions (scaling-up) or can be inferred at finer resolution (scaling-down). In heterogeneous scenes, measurements obtained at a fine resolution often cannot be summed directly to produce regional estimates and those acquired at a coarse resolution cannot be decomposed to a finer resolution without additional information. 

Several methods have been proposed and applied to investigate the scale property of remotely sensed data: local variance (Woodcock et al., 1987), scale variance (De Cola, 1989), texture analysis (Nellis and Briggs, 1989), semivariogram analysis (Woodcock et al., 1988), fractal and multi-fractal dimension (De Cola, 1989; Xia, 1997; Pecknold et al., 1997), and wavelet transform (Mallat, 1989, 1991). Among these techniques, the first three methods are suggested much earlier. Semivariogram analysis is the most popular method applied to identify the effective range of spatial scales within which image variations are spatially dependent (Cressie, 1993). Fractal techniques for analyzing scale independence in remotely sensed images have more recently been explored by several authors (Pecknold et al., 1997; Oleson et al., 1996; De Cola, 1997; Xia, 1997). The last of these techniques, wavelet analysis, is only now being used in remote sensing research. It will be the focus of this study.

This study examines the scale effects in remotely sensed images of the earth's surface using wavelet analysis. The wavelet method will be compared to other scale techniques such as measures of local variance/texture and the semivariogram/geostatistical approach.
The root mean square energy of wavelet coefficients images at each resolution is calculated to investigate the spatial heterogeneity against resolutions in three directions: horizontal, diagonal, and vertical. Three kinds of land cover type: tall grass, urban and forest are used as examples for testing the wavelet methods as a tool for scaling. The results are compared to that obtained from both the semivariogram and the local variance methods. Furthermore, the possibility of using the root mean square energy of wavelet variance maps (sum of absolute values of three directional wavelet coefficients images at a same resolution) as an indicator of the spatial variability has been tested. The root mean square energy of wavelet variance map is called the wavelet local variability measure. The plot of the wavelet local variability measure against resolution is compared to the plot of local variance against resolution. Unlike a Fourier transform that has only a single set of basis functions (sine and cosine functions), the wavelet transform has an infinite set of possible wavelets functions. In this study, I chose four standard, commonly used mother wavelets: Haar, Daubechies, Bior, and Symmlet to test the possibility of using a wavelet transform for scale-dependent analysis and to determine which is best for scale studies.
This chapter is organized as follows. In section 3.2, the detailed wavelet transform theory will be given. In section 3.3, the scaling methodologies are described. The results are presented and discussed in section 3.4.

3.2 Review of wavelet transform 

Wavelets are mathematical functions that satisfy the basic requirement that they should integrate to zero, "waving" above and below the x-axis. This is the original meaning of wavelet. Its connotation suggests the function needs to be well localized (Graps, 1995). Technically, this is needed to ensure quick and easy calculation of the direct and inverse wavelet transform. 

3.2.1 One dimensional wavelet transform
Unlike Fourier transform which has only a single set of basis functions (sine and cosine functions), wavelet transform has an infinite set of possible wavelets functions that is from a basic wavelet ((x) formed by dilations and translations (Graps, 1995; Darrozes et al., 1997, Stollnitz et al., 1995). The basic wavelet ((x) can be represented by a scaling function ((x). 
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The scaling function and basic wavelet function can be mathematically defined by recursive equations

where M is the range of the summation and is also referred to as the order of the wavelet., and  ck is called wavelet filter coefficient which is related to a specific wavelets.
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There exist many different types of basic wavelet functions with the Haar wavelets being the simplest. Its scaling function resembles a step function:

In this case, c0=1 and c1=1, i.e., ((x)= ((2x)+ ((2x-1). We obtain a set of scaling function
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where 0 <= k <= 2j-1. 
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and Haar basic wavelet function is:
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In this case, c0=1 and c1=-1, i.e., ( (x)= ((2x) - ((2x-1). The Haar wavelet basis functions can be represented as:

where 0 <= k <= 2j-1, and  j is decomposition level.
Also, a well-known family of wavelets is Daubechies-n, where n is the order of the basic wavelet, and the Daubechies-1 wavelet is equivalent to the Haar wavelet. In this study, the Haar, Symmlet, Bior, and Daubechies-2 are used to investigate spatial variations of satellite images for the scale-dependent analysis of remotely sensed imagery.

[image: image6.wmf])

9

.

3

(

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

3

2

1

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

=

f

f

f

f

Generally, the discrete wavelet transform (DWT) can be expressed by,

where N is the level of wavelet decomposition, M is the power of 2 for the length of the function, ak is approximation coefficient and wk is detail coefficient. The DWT has been extensively used in the development of fast wavelet algorithms. The most common implementation of the DWT, the well-known pyramid algorithm is shown in Figure 3.1. The pyramid decomposition (see Appendix II) is calculated by a convolution operation using a low-pass filter l and a high pass filter h. The high pass and low pass filters correspond to the selection of wavelet bases function. At each decomposition level, a set of approximation and detail coefficient images is produced, corresponding to the output of the low pass filter and high pass filter respectively. Note that every odd element of a sequence should be removed after the convolution is performed. This is called downsampling.

3.2.2 Two dimensional wavelet transform
Like Fourier transform, two-dimensional wavelet transform basis functions are separable functions of one-dimensional wavelet transform (Mallat, 1989; Daubechies, 1992).  The two-dimensional scale function is written as

((x,y)=((x) ((y)                       (3.7)

where ((x) is a one-dimensional scaling function. As a result, there are three wavelets:

X1(x,y)= ((x) ((y), X2(x,y)= ( (x) ( (y), X3(x,y)= ( (x) ( (y)                        (3.8)
Figure 3.2 shows the one level wavelet decomposition of an image. The filters l and h are one-dimensional filters (see Appendix II). When two-dimensional wavelet transform applied, four images at a coarse resolution are obtained. One is an approximation image, which contains information related to the macro-structures of the finer resolution image. The other three images are wavelet coefficients corresponding to the wavelet functions {X1 X2 X3}. Due to the separable nature of the decomposition, the three detail coefficients images are called horizontal orientation image (h), vertical orientation image (v) and diagonal orientation image (d), respectively. If the transform is continued, the approximation image is in turn decomposed further into three detailed images and another approximation image. This is called multi-resolution analysis (Ranchin and Wald, 1993). At different resolutions, the detail wavelet coefficients characterize the different detail structures of the scene. In figure 3.2, except for the approximation image, which has all positive transform values, all others detail coefficients fluctuate around zero. The larger absolute transform values in these detail wavelet coefficients images correspond to sharper brightness changes and thus to the salient features in the image such as edges, lines, and region boundaries (Manjunath and Mitra, 1995). In wavelet transform fast algorithm (see Appendix II), the two-dimensional wavelet decomposition use two-dimensional filters.  For Haar wavelets, 
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f1 is used to generate approximation image; f2 is for vertical direction; f3 is for horizontal direction and f4 is for diagonal direction. 

3.3 Methodologies

To investigate the spatial variability and scale-dependency of a remotely sensed imagery, four types of wavelets, Haar, Symmlet, Bior, and Daubechies-2 are analyzed. Wavelet based spatial variability measurements of satellite images are compared to two different traditional methods: local variance and semivariogram. 

3.3.1 Wavelet local variability
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Wavelet coefficients are a measure of the intensity of the local variations of an image for that individual scale. The value of a coefficient for a particular location at any scale can be understood as a characterization of the image structure at the chosen scale. As described earlier, the wavelet transform decomposes one image into a smoothing image and three wavelet coefficients at horizontal, vertical, and diagonal directions. This means that the variability of the original image is decomposed into the three directional sub-images: vertical, horizontal and diagonal. Since wavelet coefficients are fluctuating around zero, one may investigate the spatial variability in three directions (horizontal, vertical, and diagonal) through the root mean square energy of the wavelet coefficients  (WRMS) with formula as:

Where K is the number of coefficients at resolution (scale) j. In this study, the WRMS is denoted as the wavelet directional local variability. It is plotted against scale/resolution for investigating scale-dependency in different directions and for testing the anisotropy in an image. The results from the wavelet analysis are compared to the results derived from the directional semivariogram.

The wavelet variance (WVAR) map at a resolution is generated by following formula:

WVARi,j = |WHi,j| + |WVi,j| + |WKi,j|        (3.11)
The value of each pixel (i,j) in WVAR map represents the degree of spatial heterogeneity of an image.
WVAR is also a measure of the intensity of the local variations at a particular scale j for all directions. Actually, the wavelet coefficients have been used to detect singularities and edge information (Mallat and Hwang, 1992), to extract texture information (Burgiss et al., 1998; Mallat, 1989) at different locations and scales, and generally to compare local image properties as a function of scale (Hunt et al., 1992).
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To describe the overall variability of an image, a wavelet local variability measure VAR of a satellite image related to wavelet coefficients is introduced. The VARj, the root mean square energy of WVAR map, is represented as:

Where j is scale and k is the total number of pixels in a WVAR map.

Hence, apart from the directional local variability, graphs of the wavelet local variability and spatial resolution are used to measure spatial structure and investigate scale-dependent of images. These results are compared to the results obtained from local variance method.

3.3.2 Semivariogram
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The semivariogram is often used to investigate the spatial variability of an image. The semivariogram is computed by (Woodcock et al., 1988; Curran, 1988),

The range, sill and nugget (Figure 3.3) are three parameters of semivariograms used to describe the nature of spatial character of the data. If there is no nugget effect, the semivariance is zero when the lag is zero, the semivariogram is said to have a finite limit. With the distance increasing, the difference between the associated pixels becomes larger. At some distance, the semivariogram develops a flat region called the sill, which is the distance (or lag) at which values sampled are not spatially correlated. The height of sill often infers the overall variability of images. “With the regularization of the different satellite scenes, the properties of the semivariogram show the effect that changing image resolution has on its properties in the form of the range, sill, and nugget. These properties are used to define the structural context of the images and provide information on the scale characteristics” (Meyer and Lewis, 1996). The range is related to sizes of objects in the scene. It should be noted that the semivariance is not only related to the distance between two points (the lag), but also to the direction (Meer et al., 2000).

3.3.3 Local variance

Woodcock and Strahler (1987) initially proposed the utilization of local variance. The spatial structure of images is primarily related to the relationship between the size of the objects in the scene and spatial resolution. Graphs of local variance as a function of spatial resolution are used to measure spatial structure of an image. Calculation of the data for these graphs is accomplished by degrading the image to successively coarser spatial resolutions, while measuring local variance at each resolution. The local variance is measured as the mean value of the standard deviation of a moving N x N (3x3, 5x5, 7x7, etc) window. In an image, each pixel (except around the edge) is considered the center of a NxN window. The standard deviation of the NxN values is computed, and the mean of these values over the entire image is taken as an indication of the local variability in the image. 

A plot of local variance versus resolution allows selection of the optimal pixel size, which corresponds to the peak in the image’s variance. The rationale of this approach is rather straightforward. “If the spatial resolution is considerably finer than the objects in the scene, most of the measurements in the image will be highly correlated with their neighbors and the local variance will be low. If the objects to be studied approximate the size of the resolution cells, the values tend to be different from each other and therefore the local variance increase” (Cao and Lam, 1997). However, as the size of the pixels increases further, more objects are contained in a single pixel, and the local variance starts decreasing. 

3.4 Results

In this study, three types of land cover images (grass, forest and urban) are used for analysis. For each multi-spectral image type, principal component analysis (PCA) is performed. The first component image is chosen for analysis since this image accounts for 85% or more of the explained variance for each land cover type. Four different types of wavelets are applied on first component images and a set of wavelet coefficients images with different resolutions are generated. Then the directional wavelet local variability measures and overall wavelet local variability measures are plotted against resolutions. To measure the local variance at multiple resolutions, the first component images are degraded to coarser spatial resolutions by using a cubic resampling technique.

3.4.1 Grassland area image

The images used for analysis are SPOT-4 images of a grassland area located in the Oklahoma, USA. Figure 3.4 shows the first component image and its two-level decomposition by Haar wavelets. For this scene, the range of scale/resolution changes from the original 20m to 40m, 80m and on by multiples to a maximum of 1280m. 

Figure 3.5 shows the WRMS for each direction plotted against scale/resolution. The graphs of Daubechies-2, Bior, and Symmlet wavelets do not provide any useful information related to spatial structure information of the tall grass image. 

However, the Haar curves show that WRMS increases to a peak and then decreases until between 600m and 800m. The peaks of horizontal, vertical and diagonal directions correspond to 160m, 120m and 240m resolutions respectively. Figure 3.6 shows the semivariograms of three directions. Actually, one can see that horizontal direction’s range is 160m and vertical direction’s range is 140m, which are close to the peak resolutions for the Haar WRMS curves at the horizontal and vertical direction. For the diagonal direction, the range of the semivariogram is about 300m, which is also close to the 240m resolution obtained from the WRMS of wavelet coefficients. Therefore one can conclude that the peaks of Haar WRMS curve reflect the resolution with the greatest spatial variability. As described earlier, the range of a variogram indicates a spatial scale of the pattern and is related to sizes of object at that corresponding direction. Hence the Haar WRMS curves indicate the different sizes in the spatial pattern at different directions for the grassland image. 

Figure 3.7 shows the graphs of VARj against scale/resolution. The graphs of Daubechies-2, Bior, and Symlet wavelet VARj, just like WRMS, do not provide much useful information for linking to scale-dependency to the tall grass image. Only the graph of Haar-VARj shows organized form in which the variance starts to increase at 40m resolution and reaches a peak after which the curve decreases to a resolution of 640m. The peak of the curve is between 200m and 240m resolution. As the size of individual resolution cells increases, the likelihood that surrounding pixels will be similar decreases. In this case, the Haar-VARj increases until the resolution increases past this peak, and then the Haar-VARj decreases. This decrease is related to individual pixels increasingly being mixed. 

These results are similar to the results from the local variance method.  The graph of local variance as a function of resolution (Figure 3.8) also starts with a low local variance and increases until a peak resolution of 240m. After 240m, the local variance decreases. The peak’s resolution from Haar-VARj is close to that derived from local variance. It is noted that the graph of local variance versus pixel size allows for the selection of the optimal pixel size corresponding to its peak variability. Thus one can say the optimal sampling size in the tall grass area image is between 200m and 240m resolutions.

After a 640m resolution, the Haar’s variability for both the directional WRMS and the overall VARj surprisingly begins to increase but this does not occur for the semivariogram and local variance graphs. The interpretation of this situation is not easy. One possible reason is that agriculture, which is dominant in southeast section of the scene, leads to an increase in the Haar wavelet local variability after 640m resolution. This may indicate that the wavelet local variability measure is able to reflect the inter-class variability in a scene. 

3.4.2 Urban image

A four band SPOT images of a portion of Orlando, Florida is used as an example of an urban land cover type. Figure 3.9 shows the first component image. The scene is complex, having several kinds of different elements. The most obvious elements are different streets, parks, and houses. For this scene, the range of scale/resolution is aggregated from the original 20m to 40m, 80m, continuing up to 640m.

The graphs of WRMS as a function of resolutions are shown in Figure 3.10. For this scene, the only bases wavelets that do not provide any signal information for spatial structure in the image are the Bior wavelets. The WRMS graphs of other three wavelets all start with low WRMS at 40m resolution. The WRMS rapidly increases until a peak is reached. One can see that Haar, Daubechies-2, and Symmlet wavelets all for a particular direction have their peaks at the same resolution. The peak resolution for the horizontal, vertical and diagonal directions is 120m, 80m, and 120m respectively. After the peak is past in the horizontal direction, the graph continues to have high variance values up to 160m and after which the WRMS value slightly declines. In the vertical direction the WRMS decreases from its peak, while in the diagonal direction, the WRMS remains high until it reaches the 200m resolution and then the variance decreases. WRMS reflects the spatial variability of an image. In this scene, the horizontal direction has its greatest variability between 120m and 160m, 80m in the vertical direction and between 120m and 200m in the diagonal direction. When these results are compared to the directional semivariograms of this scene (Figure 3.11), the ranges for the horizontal, vertical, and diagonal directions are 160m, 100m, and 200m respectively, which are close to the largest spatial variability measured from the WRMS. Therefore, the results show that the peaks of the directional WRMS are equivalent to the range of semivariogram in this scene.

The graphs of VARj (Figure 3.12) have the same pattern as those of directional WRMS. The Bior wavelets are again not useful for interpretation of image’s spatial structure. The other three graphs begin with low VARj at 40m resolution. At this resolution, pixels are smaller than the objects in the image. The VARj rapidly increases and reaches a peak at 80m resolution for all three wavelets: Haar, Daubechies-2, and Symmlet.  However, after 80m resolution, the Haar-VARj slightly declines, whereas Daubechies-2-VARj and Symmlet-VARj values stay high until the resolution reaches 160m and then their values decline. 

As a comparison, the graph of local variance is shown in Figure 3.13. The local variance begins with a low value at 40m and rapidly rises to a peak at 80m. After the peak in local variance, there is a general decline over the remaining resolutions. This graph of local variance is similar in shape to the graph from Haar-VARj for this scene. Because of this association, the Haar wavelet is thought to give better results in investigating scale dependency than other wavelet types.

For both methods, 80m resolution, which is the peak in the local variability graphs, is greater than the general size of the objects in the scene. The possible reason is that the parks have an effect on the location of the peak and cause the peaks to shift to the coarser resolutions. Also there exist a secondary peak in both for WRMS graphs and VARj graph. The Haar wavelet has this secondary peak at 480m for the horizontal and 400m for the diagonal WRMS, while the overall VARj secondary peak occurs at 400m. These secondary peaks are all less than the finer resolution peaks and may be related to the structural size difference between the residential areas and the parks.

3.4.3 Forest image

TM multi-spectral images were obtained for an area near Albuquerque, New Mexico, which serves as an example of a forest land cover type. This scene is relatively simple in structure, with deciduous forest as the only major element. Figure 3.14 shows the first component image of the multi-spectral images. For this scene, the range of scale/resolution is aggregated from the original 30m to 60m, 120m, continuing up to 960m.

The graphs of directional wavelet variability WRMS (Figure 3.15), just as in grassland scene, show that only Haar WRMS helps explain the spatial structure of the forest scene. The Haar WRMS graphs indicate that there is maximum variability between 240m and 300m for the horizontal direction, the vertical direction has its greatest variability between 180m and 240m, but the diagonal direction has its highest variability for resolutions from 240m to 360m. The directional semivariograms of this scene (Figure 3.16) are compared to the results from those of the Haar wavelet WRMS. The semivariogram’s range in the horizontal direction is 270m, its vertical direction’s range is 180m, and the diagonal direction has a range with 340m. These similar results indicate that the values obtained from the directional WRMS can serve in the same manner as the semivariogram for investigating the spatial structure for this scene. In theory, a peak should not occur in the single or more uniform land cover type. But in this case, the complex topography affects the results causing a peak to occur.

The graph of overall VARj plotted against resolution is shown in Figure 3.17. The graph increases from finer resolution until a peak is reached at a resolution of 300m. This is similar to the graph of local variance (Figure 3.18), which has a corresponding peak at 270m. The similarity indicates that the graph of overall VARj can be used to select an optimal sampling size for a remote sensing image. In this scene, the optimal pixel size is 300m resolution corresponding to the peak in the graph of overall VARj.  However, it is noted that the WRMS decreases slowly but the local variance decreases rapidly. One reason for this difference is that the topography is very complex in this scene and irregular boundaries are often associated with complex topography. On the other hand, wavelets are a good multi-resolution detector of the boundary information, which helps explain the difference. 

3.5 Conclusions

In this study, wavelet-based methods are developed for the scale-dependent analysis of the satellite image. Considering infinite wavelet basis functions in wavelet analysis, four standard, commonly used mother wavelets: Haar, Daubechies-2, Bior, and Symmlet are selected to test the possibility of using wavelet for scale-dependent analysis. The root mean square energy of the wavelet coefficients (WRMS) is plotted against resolution to investigate how the spatial variability changes with the resolution in three directions: horizontal, vertical, and diagonal. In order to utilize wavelets to investigate the overall variability of a satellite image, the root mean square of WVAR map, which is called the wavelet local variability VARj at scale j, is calculated. Then VARj is plotted against resolution in order to investigate the optimal pixel size of satellite images. The methods are tested on three kinds of land cover types: grassland, urban and forest. 

The results show that the peaks of the directional Haar WRMS are similar as the ranges of directional semivariograms. Different directions have different peaks range, which indicates that a satellite image is non-isotropic. The Haar bases wavelet results, also, are consistently similar to the results of local variance method. In this case, Haar wavelets provide another method for a selection of optimal sampling size.

The results also show that only Haar bases wavelet is suitable for investigating scale dependency and spatial structure. It is difficult to provide an explanation for this situation. The possible reason is that Haar wavelets put the same weight on neighboring pixels, while the other wavelets bases functions give different weights to the surrounding pixels when computing the wavelet coefficients. These results need to be tested on other datasets.

The graphs of Haar-VARj each showed a secondary peak except for the forest image, This secondary peak may be related to the spatial distances between objects within the image. This effect will be explained in a future paper.
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