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Abstract

With the development of Geographical Information System (GIS) and remote sensing techniques, a great deal of data has provided a set of continuous samples of the earth surface from local, regional to global scales. Several multi-scale, multi-resolution, pyramid or hierarchical methods and statistical methods have been developed and used to investigate the scaling property of remotely sensed data: local variance, texture method, scale variance, semivariogram, and fractal analysis. This research introduces the wavelet transform into the realm of scale study in remote sensing and answers three research questions. Three specific objectives corresponding to the three research questions are answered. They include: 1. exploration of wavelets for scale-dependent analysis of remotely sensed imagery; 2. examination of the relationships between wavelet coefficients and classification accuracy for different resolutions and their improvement of classification accuracy; and 3. multiscaling analysis and stochastic down-scaling of an image by using the wavelet transform and multifractals. The significant results obtained are: 1. Haar wavelets can be used to investigate the scale-dependent and spatial structure of an image and provides another method for selection of optimal sampling size; 2. there is a good relationship between classification accuracy and wavelet coefficients. High/low wavelet coefficient reflects low/high classification accuracy in each land cover type. 3. the maximum likelihood classifier with inclusion of wavelet coefficients can improve land cover classification accuracies. 4. the moment-scale analysis of wavelet coefficients can be used to investigate the multifractal properties of an image. Also the stochastic down-scaling model developed based on wavelet and multifractal generates good simulation results of the fine resolution image.

Résumé

Avec le développement du Système d’Information Géographique (GIS) et des techniques de détection à distance, de nombreuses données ont fourni une série d’échantillons continuels de la surface de la Terre à partir d’échelles locales,  régionales jusqu’aux échelles globales. Plusieurs des méthodes multi-échelle, multi-résolution, pyramidales ou hiérarchiques et les méthodes statistiques ont été dévelopés et utilisés pour étudier les caractéristiques d’échelles des données obtenues par télédétection : la variance locale, la méthode de la texture, la variance par rapport aux barèmes, semivariogram, analyse fractale.

Cette recherche introduit la transformation d’ondelette dans l’étude des échelles de la détection à distance par sondes et répond à 3 thèmes étudiés dans le Chapitre I. Trois objectifs spécifiques correspondants aux trois thèmes étudiés sont finalisés dans cette recherche. Ils comprennent : 1. l’exploration de la méthode des ondelettes pour une analyse de le dépendance d’échelle  de l’imagerie par sondes à distance; 2. L’examen des relations entre les coefficients des ondelettes et la classification de précision à différents niveaux de résolution et l’amélioration de cette classification de précision; et 3. l’analyse multi-échelle et le down-scaling stochastique des images de la végétation en utilisant la transformation en ondelettes et les multifractals.

Les résultats significatifs obtenus sont : 1.les ondelettes de Haar peuvent être utilisés afin d’étudier la dépendance d’échelle et la structure spatiale d’une image et fournissent  une autre méthode de sélection  de la taille optimale d’échantillonage; 2. il y a une relation entre la classification de précision et les coefficients des ondelettes. Les coefficients hauts/bas représentent une basse/haute classification de précision dans chaque type de couverture terrestre. 3. La classification par haute similitude avec des inclusions des coefficients d’ondelettes peut améliorer la classification de précision de la couverture terrestre.4. l’analyse moment-scale des coefficients d’ondelettes peut être utilisée pour étudier les propriétés multifractal d’une image. De plus, le modèle stochastique down-scaling basé sur les ondelettes et des multifractales génère une bonne simulation d’une image à résolution fine.

Statement of Originality

Based on wavelet transform and multifractal modeling, this research develops applicable approaches for scale studies in remote sensing with regard to three aspects: how to process scale dependency, how to improve classification accuracy across scales/resolutions, and how to use low spatial resolution remote sensing data to monitor and model important terrestrial processes. The following paragraphs describe the author’s original contributions to scale studies in remote sensing.

A method based on wavelet transform was developed to study scale dependency of satellite images. In particular, the root mean square energy of the wavelet coefficients (WRMS) is first employed to indicate spatial variability of an image and plotted against resolutions to investigate the spatial heterogeneity with changing resolution at three directions: horizontal, diagonal, and vertical.  Four standard, commonly used mother wavelets were chosen to assess the difference of result. Only Haar wavelets were found to give the same results as local variance and semivariogram.

A wavelet based method was first proposed to examine the relationship of wavelet coefficient and classification accuracy for satellite images at different resolutions. In general, high/low wavelet coefficients reflect low/high classification accuracy in each land cover types. In addition, by incorporating wavelet coefficients into maximum likelihood classifier, a 9% improvement of overall classification accuracy of land cover was obtained compared to the classification result generated by only using TM bands.

The wavelet coefficients of a remotely sensed imagery were employed in place of the image itself to investigate multifractal properties of an image. A model based on discrete Haar wavelet analysis and multifractal modeling was designed to stochastically simulate a high resolution image from a low resolution image. The model presents good simulation results. Importantly, simulated images by this model preserves the macro-structure information and statistics of original low resolution image.
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